suchen
HeimBackend-EntwicklungPython-TutorialWie funktionieren die Funktionen „any' und „all' von Python beim Listenverständnis und warum könnte dies „[False, False, False]' zurückgeben?

How Do Python's `any` and `all` Functions Work in List Comprehension, and Why Might This Return `[False, False, False]`?

Die Any-and-All-Funktionen von Python verstehen

Die Any-and-All-Funktionen von Python sind integrierte Funktionen, die Iterables auswerten und einen booleschen Wert basierend auf dem zurückgeben Wahrhaftigkeit ihrer elements.

any

any gibt True zurück, wenn mindestens ein Element im Iterable True ist (oder ungleich Null für numerische Werte). Es wertet das Iterable aus, bis ein True-Wert gefunden wird oder alle Elemente erschöpft sind.

all

all gibt nur dann True zurück, wenn alle Elemente im Iterable True sind. Wenn das Iterable leer ist, gibt all „True“ zurück. Das iterierbare Element wird so lange ausgewertet, bis ein falscher Wert gefunden wird oder alle Elemente untersucht wurden.

Wahrheit

Das Verständnis der Wahrhaftigkeit ist entscheidend, um zu verstehen, wie alle Elemente funktionieren. In Python gelten Werte als wahr, wenn sie nicht Null, leere Zeichenfolgen oder None (Null) sind. Zu den Falsey-Werten gehören 0, leere Container und False selbst.

Ihr Code

In Ihrem Code verwenden Sie das Listenverständnis:

[any(x) and not all(x) for x in zip(*d['Drd2'])]

Um diesen Ausdruck zu verstehen, brechen wir ihn auf down:

  • zip(*d['Drd2']): Erstellt eine Liste von Tupeln, indem entsprechende Elemente aus verschiedenen Listen in d['Drd2'] gruppiert werden.
  • für x in zip(*d['Drd2']): iteriert über Tupel in der erstellten Liste von Tupeln.
  • any(x): wertet aus, ob ein Element in a gegebenes Tupel ist wahr.
  • nicht alle(x): wertet aus, ob nicht alle Elemente in einem gegebenen Tupel wahr sind.
  • und: kombiniert die Ergebnisse der vorhergehenden Ausdrücke.

Warum False zurückgegeben wird

Ihr Code gibt [False, False, False] zurück, weil er prüft wenn für jedes Tupel in der Liste der Tupel mindestens ein Wert True ist und gleichzeitig nicht alle Werte True sind. Da die Tupel in d['Drd2'] identische Elemente haben, ist all(x) für jedes Tupel wahr, was bedeutet, dass nicht all(x) falsch ist. Folglich wird der Gesamtausdruck zu „any(x)“ und nicht „all(x)“ wird für jedes Tupel als „Falsch“ ausgewertet.

Das obige ist der detaillierte Inhalt vonWie funktionieren die Funktionen „any' und „all' von Python beim Listenverständnis und warum könnte dies „[False, False, False]' zurückgeben?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie können Sie Elemente an ein Python -Array anhängen?Wie können Sie Elemente an ein Python -Array anhängen?Apr 30, 2025 am 12:19 AM

Inpython, youAppendElementStoAlistusedtheAppend () Methode.1) UseAppend () ForsingleElelements: my_list.append (4) .2) usextend () oder = formulnElements: my_list.extend (andere_list) ormy_list = [4,5,6] .3) useInSert () FORSPECIFIFICISPositionen: my_list.insert (1,5) .Beaware

Wie debuggen Sie Probleme mit dem in SHEBANG verwandten Problem?Wie debuggen Sie Probleme mit dem in SHEBANG verwandten Problem?Apr 30, 2025 am 12:17 AM

Zu den Methoden zum Debuggen des Shebang -Problems gehören: 1.. Überprüfen Sie die SHEBANG -Zeile, um sicherzustellen, dass es sich um die erste Zeile des Skripts handelt, und es gibt keine vorangestellten Räume. 2. Überprüfen Sie, ob der Dolmetscherpfad korrekt ist; 3. Rufen Sie den Dolmetscher direkt an, um das Skript auszuführen, um das Problem der Shebang zu isolieren. 4. Verwenden Sie Strace oder Trusts, um die Systemaufrufe zu verfolgen. 5. Überprüfen Sie die Auswirkungen von Umgebungsvariablen auf Shebang.

Wie entfernen Sie Elemente aus einem Python -Array?Wie entfernen Sie Elemente aus einem Python -Array?Apr 30, 2025 am 12:16 AM

PythonlistscanbemanipuleduseveralmethodstoremoveElements: 1) theremove () methodremoveFirstoccurce -ofaspecifiedValue.2) thepop () methodremovesandreturnsanelementatagivedEx.3) theedelstatementcanremoveMeMeMeMeTex.

Welche Datentypen können in einer Python -Liste gespeichert werden?Welche Datentypen können in einer Python -Liste gespeichert werden?Apr 30, 2025 am 12:07 AM

PythonlistscanstoreanyDatatype, einschließlich Integren, Streicher, Schwimmkörper, Booleans, anderen Listen und Dotionen. ThisverSatilityAllows-Formixed-Typen, die kanbemännische EffectivantivinyusingTypecks, TypenHints und spezialisierte LikenumpyForperformance

Was sind einige gängige Operationen, die auf Python -Listen ausgeführt werden können?Was sind einige gängige Operationen, die auf Python -Listen ausgeführt werden können?Apr 30, 2025 am 12:01 AM

PythonlistsSupportnumousoperationen: 1) AddelementsWithAppend (), Extend (), andInsert (). 2) REMVERGENDEMODESUSUSUSSUMOVER (), POP () und Clear (). 3) Accessing undModifyingWithindexingandSlicing.4) SearchingandSortingWithindEx (), Sorte (), und Sortex ()

Wie erstellen Sie mehrdimensionale Arrays mit Numpy?Wie erstellen Sie mehrdimensionale Arrays mit Numpy?Apr 29, 2025 am 12:27 AM

Durch die folgenden Schritte können mehrdimensionale Arrays mit Numpy erstellt werden: 1) Verwenden Sie die Funktion numpy.array (), um ein Array wie NP.Array ([1,2,3], [4,5,6]) zu erstellen, um ein 2D-Array zu erstellen; 2) Verwenden Sie np.zeros (), np.ones (), np.random.random () und andere Funktionen, um ein Array zu erstellen, das mit spezifischen Werten gefüllt ist; 3) Verstehen Sie die Form- und Größeneigenschaften des Arrays, um sicherzustellen, dass die Länge des Unterarrays konsistent ist und Fehler vermeiden. 4) Verwenden Sie die Funktion np.reshape (), um die Form des Arrays zu ändern. 5) Achten Sie auf die Speichernutzung, um sicherzustellen, dass der Code klar und effizient ist.

Erklären Sie das Konzept des 'Rundfunks' in Numpy -Arrays.Erklären Sie das Konzept des 'Rundfunks' in Numpy -Arrays.Apr 29, 2025 am 12:23 AM

SendeminnumpyissamethodtoperformoperationsonarraysofdifferentShapesByAutomaticaligningTHem.itsimplifiesCode, Verbesserung der Verschiebbarkeit, und BoostSPerformance.her'Showitworks: 1) kleinereArraysArepaddedwithonestOMatchDimens.2) compatibledimens

Erklären Sie, wie Sie zwischen Listen, Array.Array und Numpy -Arrays für die Datenspeicherung auswählen.Erklären Sie, wie Sie zwischen Listen, Array.Array und Numpy -Arrays für die Datenspeicherung auswählen.Apr 29, 2025 am 12:20 AM

Forpythondatastorage, ChooselistsforflexibilitätswithmixedDatatypes, Array.Arrayformemory-effizientesHomogenoususnumericalData und NumpyArraysForAdvancedNumericalComputing.ListsareversAntileffictionForLarGenicalDataSetsetaSets;

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion