Hallo, Chroma DB ist eine Vektordatenbank, die für die Arbeit mit GenAI-Anwendungen nützlich ist. In diesem Artikel werde ich untersuchen, wie wir Abfragen auf Chroma DB ausführen können, indem ich mir ähnliche Beziehungen in MySQL anschaue.
Schema
Im Gegensatz zu SQL können Sie kein eigenes Schema definieren. In Chroma erhalten Sie feste Spalten mit jeweils eigenem Zweck:
import chromadb #setiing up the client client = chromadb.Client() collection = client.create_collection(name="name") collection.add( documents = ["str1","str2","str3",...] ids = [1,2,3,....] metadatas=[{"chapter": "3", "verse": "16"},{"chapter":"3", "verse":"5"}, ..] embeddings = [[1,2,3], [3,4,5], [5,6,7]] )
IDs: Es handelt sich um eindeutige IDs. Beachten Sie, dass Sie sie selbst bereitstellen müssen, im Gegensatz zu SQL gibt es keine automatische Inkrementierung
Dokumente: Wird zum Einfügen der Textdaten verwendet, die zum Generieren der Einbettungen verwendet werden. Sie können den Text eingeben und die Einbettungen werden automatisch erstellt. Oder Sie können Einbettungen einfach direkt bereitstellen und den Text an anderer Stelle speichern.
Einbettungen: Sie sind meiner Meinung nach der wichtigste Teil der Datenbank, da sie zur Durchführung der Ähnlichkeitssuche verwendet werden.
Metadaten: Dies wird verwendet, um alle zusätzlichen Daten zu verknüpfen, die Sie möglicherweise für zusätzlichen Kontext zu Ihrer Datenbank hinzufügen möchten.
Da nun die Grundlagen einer Sammlung klar sind, können wir mit den CRUD-Operationen fortfahren und sehen, wie wir die Datenbank abfragen können.
CRUD-Operationen
Hinweis: Sammlungen sind wie Tabellen in Chroma
Um eine Sammlung zu erstellen, können wir create_collection() verwenden und unsere Vorgänge nach Bedarf ausführen. Wenn die Sammlung jedoch bereits erstellt wurde und wir sie erneut aktualisieren müssen, müssen wir get_collection() verwenden, sonst erhalten wir eine Fehlermeldung.
Create Table tablename
#Create a collection collection = client.create_collection(name="name") #If a collection is already made and you need to use it again the use collection = client.get_collection(name="name")
Insert into tablename Values(... , ..., ...)
collection.add( ids = [1] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] )
Um die eingefügten Daten zu aktualisieren oder die Daten zu löschen, können wir die folgenden Befehle verwenden
collection.update( ids = [2] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] ) # If the id does not exist update will do nothing. to add data if id does not exist use collection.upsert( ids = [2] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] ) # To delete data use delete and refrence the document or id or the feild collection.delete( documents = ["some text"] ) # Or you can delete from a bunch of ids using where that will apply filter on metadata collection.delete( ids=["id1", "id2", "id3",...], where={"chapter": "20"} )
Abfragen
Jetzt schauen wir uns an, wie bestimmte Abfragen aussehen
Select * from tablename Select * from tablename limit value Select Documents, Metadata from tablename
collection.get() collection.get(limit = val) collection.get(include = ["documents","metadata"])
Während get() dazu dient, eine große Menge an Tabellen für komplexere Abfragen abzurufen, müssen Sie die Abfragemethode verwenden
Select A,B from table limit val
collection.query( n_results = val #limit includes = [A,B] )
Jetzt haben wir drei Möglichkeiten, die Daten zu filtern: Ähnlichkeitssuche (wofür Vektordatenbanken hauptsächlich verwendet werden), Metadatenfilter und Dokumentfilter
Ähnlichkeitssuche
Wir können basierend auf Text oder Einbettungen suchen und die ähnlichsten Ergebnisse erhalten
collection.query(query_texts=["string"]) collection.query(query_embeddings=[[1,2,3]])
In ChromaDB werden die Parameter where und where_document verwendet, um Ergebnisse während einer Abfrage zu zu filtern. Mit diesen Filtern können Sie Ihre Ähnlichkeitssuche basierend auf Metadaten oder bestimmten Dokumentinhalten verfeinern.
Nach Metadaten filtern
Mit dem Where-Parameter können Sie Dokumente basierend auf den zugehörigen Metadaten filtern. Metadaten sind normalerweise ein Wörterbuch von Schlüssel-Wert-Paaren, die Sie beim Einfügen des Dokuments angeben.
Dokumente nach Metadaten wie Kategorie, Autor oder Datum filtern.
import chromadb #setiing up the client client = chromadb.Client() collection = client.create_collection(name="name") collection.add( documents = ["str1","str2","str3",...] ids = [1,2,3,....] metadatas=[{"chapter": "3", "verse": "16"},{"chapter":"3", "verse":"5"}, ..] embeddings = [[1,2,3], [3,4,5], [5,6,7]] )
Create Table tablename
Nach Dokumentinhalt filtern
Der Parameter where_document ermöglicht das Filtern direkt basierend auf dem Inhalt von Dokumenten.
Nur Dokumente abrufen, die bestimmte Schlüsselwörter enthalten.
#Create a collection collection = client.create_collection(name="name") #If a collection is already made and you need to use it again the use collection = client.get_collection(name="name")
Wichtige Hinweise:
- Verwenden Sie Operatoren wie $contains, $startsWith oder $endsWith.
- $contains: Dokumente abgleichen, die eine Teilzeichenfolge enthalten.
- $startsWith: Dokumente abgleichen, die mit einer Teilzeichenfolge beginnen.
- $endsWith: Dokumente abgleichen, die mit einer Teilzeichenfolge enden.
-
Zum Beispiel:
Insert into tablename Values(... , ..., ...)
Häufige Anwendungsfälle:
Wir können alle drei Filter folgendermaßen kombinieren:
-
Suche innerhalb einer bestimmten Kategorie:
collection.add( ids = [1] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] )
-
Dokumente suchen, die einen bestimmten Begriff enthalten:
collection.update( ids = [2] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] ) # If the id does not exist update will do nothing. to add data if id does not exist use collection.upsert( ids = [2] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] ) # To delete data use delete and refrence the document or id or the feild collection.delete( documents = ["some text"] ) # Or you can delete from a bunch of ids using where that will apply filter on metadata collection.delete( ids=["id1", "id2", "id3",...], where={"chapter": "20"} )
-
Metadaten- und Dokumentinhaltsfilter kombinieren:
Select * from tablename Select * from tablename limit value Select Documents, Metadata from tablename
Diese Filter verbessern die Präzision Ihrer Ähnlichkeitssuchen und machen ChromaDB zu einem leistungsstarken Tool für die gezielte Suche nach Dokumenten.
Abschluss
Ich habe diesen Artikel geschrieben, weil ich das Gefühl hatte, dass das Dokument zu wünschen übrig lässt, wenn ich versuche, mein eigenes Programm zu erstellen. Ich hoffe, das hilft!
Vielen Dank fürs Lesen. Wenn Ihnen der Artikel gefallen hat, liken und teilen Sie ihn bitte. Auch wenn Sie neu in der Softwarearchitektur sind und mehr wissen möchten, starte ich eine gruppenbasierte Kohorte, in der ich persönlich mit Ihnen und einer kleinen Gruppe zusammenarbeiten werde, um Ihnen alles über die Prinzipien der Softwarearchitektur und des Softwaredesigns beizubringen. Bei Interesse können Sie das untenstehende Formular ausfüllen. https://forms.gle/SUAxrzRyvbnV8uCGA
Das obige ist der detaillierte Inhalt vonChromaDB für den SQL Mind. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

Dreamweaver Mac
Visuelle Webentwicklungstools

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),