Kauf mir einen Kaffee☕
*Mein Beitrag erklärt EMNIST.
EMNIST() kann den EMNIST-Datensatz wie unten gezeigt verwenden:
*Memos:
- Das 1. Argument ist root(Required-Type:str oder pathlib.Path). *Ein absoluter oder relativer Pfad ist möglich.
- Das 2. Argument ist split(Required-Type:str). *Es können „byclass“, „bymerge“, „balanced“, „letters“, „digits“ oder „mnist“ eingestellt werden.
- Es gibt ein Zugargument (Optional-Default:False-Type:float):
*Memos:
- Für split="byclass" und split="byclass" werden, wenn es „True“ ist, Trainingsdaten (697.932 Bilder) verwendet, während, wenn es „False“ ist, Testdaten (116.323 Bilder) verwendet werden.
- Für split="balanced" werden, wenn es „True“ ist, Trainingsdaten (112.800 Bilder) verwendet, während, wenn es „False“ ist, Testdaten (188.00 Bilder) verwendet werden.
- Wenn „split="letters“ wahr ist, werden Trainingsdaten (124.800 Bilder) verwendet, während bei „falsch" Testdaten (20.800 Bilder) verwendet werden.
- Wenn „split="digits" „True“ ist, werden Trainingsdaten (240.000 Bilder) verwendet, während bei „False“ Testdaten (40.000 Bilder) verwendet werden.
- Wenn „split="mnist" wahr ist, werden Trainingsdaten (60.000 Bilder) verwendet, während bei „falsch“ Testdaten (10.000 Bilder) verwendet werden.
- Es gibt ein Transformationsargument (Optional-Default:None-Type:callable).
- Es gibt das Argument target_transform (Optional-Default:None-Type:callable).
- Es gibt ein Download-Argument (Optional-Default:False-Type:bool):
*Memos:
- Wenn es wahr ist, wird der Datensatz aus dem Internet heruntergeladen und in das Stammverzeichnis extrahiert (entpackt).
- Wenn es „True“ ist und der Datensatz bereits heruntergeladen wurde, wird er extrahiert.
- Wenn es „True“ ist und der Datensatz bereits heruntergeladen und extrahiert wurde, passiert nichts.
- Es sollte „False“ sein, wenn der Datensatz bereits heruntergeladen und extrahiert wurde, da es schneller ist.
- Sie können den Datensatz hier manuell herunterladen und extrahieren, um ihn z. data/EMNIST/raw/.
- Es gibt den Fehler, dass die Bilder standardmäßig gespiegelt und um 90 Grad gegen den Uhrzeigersinn gedreht werden, sodass sie transformiert werden sollten.
from torchvision.datasets import EMNIST train_data = EMNIST( root="data", split="byclass" ) train_data = EMNIST( root="data", split="byclass", train=True, transform=None, target_transform=None, download=False ) test_data = EMNIST( root="data", split="byclass", train=False ) len(train_data), len(test_data) # 697932 116323 train_data # Dataset EMNIST # Number of datapoints: 697932 # Root location: data # Split: Train train_data.root # 'data' train_data.split # 'byclass' train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method emnist.download of dataset emnist number datapoints: root location: data split: train> train_data[0] # (<pil.image.image image mode="L" size="28x28">, 35) train_data[1] # (<pil.image.image image mode="L" size="28x28">, 36) train_data[2] # (<pil.image.image image mode="L" size="28x28">, 6) train_data[3] # (<pil.image.image image mode="L" size="28x28">, 3) train_data[4] # (<pil.image.image image mode="L" size="28x28">, 22) train_data.classes # ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', # 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', # 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', # 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', # 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
from torchvision.datasets import EMNIST train_data = EMNIST( root="data", split="byclass", train=True ) test_data = EMNIST( root="data", split="byclass", train=False ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data)
from torchvision.datasets import EMNIST from torchvision.transforms import v2 train_data = EMNIST( root="data", split="byclass", train=True, transform=v2.Compose([ v2.RandomHorizontalFlip(p=1.0), v2.RandomRotation(degrees=(90, 90)) ]) ) test_data = EMNIST( root="data", split="byclass", train=False, transform=v2.Compose([ v2.RandomHorizontalFlip(p=1.0), v2.RandomRotation(degrees=(90, 90)) ]) ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data)
Das obige ist der detaillierte Inhalt vonEMNIST in PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung