


Wie extrahiere ich Subarrays mit einem bestimmten Schritt effizient aus einem NumPy-Array?
Effiziente Übernahme von Subarrays aus dem Numpy-Array mit gegebener Schrittweite/Schrittgröße
In der Welt der Datenanalyse müssen wir Subarrays oft mit bestimmten Schritten extrahieren Schritte oder Schrittgrößen aus einem größeren Array. Numpy, die beliebte Python-Bibliothek für numerische Operationen, bietet mehrere Methoden, um dies effizient zu erreichen.
Problemstellung:
Gegeben ein Numpy-Array, möchten wir eine Matrix von Unterarrays von extrahieren eine feste Länge mit einer bestimmten Schrittweite oder Schrittgröße. Ein Schritt ist der Abstand zwischen den Anfängen aufeinanderfolgender Subarrays.
Diskussion:
Eine einfache Möglichkeit, Subarrays zu erstellen, besteht darin, mithilfe einer for-Schleife über das ursprüngliche Array zu iterieren . Obwohl dieser Ansatz funktioniert, kann er bei großen Arrays langsam sein.
Ansatz 1: Broadcasting
Der Broadcasting-Mechanismus von NumPy ermöglicht es uns, Subarrays ohne Schleifen zu erstellen. Wir können die folgende Funktion verwenden, die das Array, die Subarray-Länge (L) und den Schritt (S) übernimmt:
def broadcasting_app(a, L, S): nrows = ((a.size - L) // S) + 1 return a[S * np.arange(nrows)[:, None] + np.arange(L)]
Erklärung:
np.arange(nrows) erstellt ein Array von Indizes mit einer Schrittweite von 1. Durch Multiplikation mit S erhalten wir die Startindizes jedes Subarrays. Anschließend senden wir diese Indizes über die Zeilen von a, um die Subarrays zu erhalten.
Ansatz 2: NumPy Strides
Eine weitere effiziente Methode nutzt die Strides-Funktion von NumPy. Schritte stellen die Anzahl der Bytes zwischen aufeinanderfolgenden Elementen entlang jeder Achse dar. Wir können diese Informationen verwenden, um Subarrays zu erstellen:
def strided_app(a, L, S): nrows = ((a.size - L) // S) + 1 n = a.strides[0] return np.lib.stride_tricks.as_strided(a, shape=(nrows, L), strides=(S * n, n))
Erklärung:
Wir verwenden np.lib.stride_tricks.as_strided, um a umzuformen, indem wir seine Schritte ausnutzen. Das resultierende Array hat die gewünschte Anzahl von Zeilen (nrows) und Subarray-Länge (L), während die Schrittweite von S beibehalten wird.
Beispielcode:
Zur Veranschaulichung Ansätze:
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) print(broadcasting_app(a, L=5, S=3)) print(strided_app(a, L=5, S=3))
Ausgabe:
[[ 1 2 3 4 5] [ 4 5 6 7 8] [ 7 8 9 10 11]] [[ 1 2 3 4 5] [ 4 5 6 7 8] [ 7 8 9 10 11]]
Beide Ansätze generieren effizient die Matrix von Subarrays mit der gewünschten Schrittweite.
Das obige ist der detaillierte Inhalt vonWie extrahiere ich Subarrays mit einem bestimmten Schritt effizient aus einem NumPy-Array?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

PythonarraysSupportvariousoperationen: 1) SlicicingExtractsSubsets, 2) Anhang/Erweiterungen, 3) Einfügen von PlaceSelementsatspezifischePositionen, 4) Entfernen von Delettel, 5) Sortieren/ReversingChangesorder und 6) compredewlistenwlists basierte basierte, basierte Zonexistin

NumpyarraysaresessentialForApplicationsRequeeFoughnumericalComputations und Datamanipulation

UseanArray.ArrayoveralistinpythonwhendealingwithhomogenousData, Performance-CriticalCode, OrInterfacingwithCcode.1) HomogenousData: ArraysSavemoryWithtypedElements.2) Performance-CriticalCode: ArraySaveMoryWithtypedElements.2) Performance-CriticalCode: ArraysFerbetterPerPterPerProrMtorChorescomeChormericalcoricalomancomeChormericalicalomentorMentumscritorcorements.3) Interf

Nein, NOTALLLISTOPERATIONSARESURDEDBYARAYS UNDVICEVERSA.1) ArraysDonotsupportdynamicoperationslikeAppendorinStResizing, die impactSperformance.2) listsDonotguaranteConstantTimeComplexityfordirectAccesslikearraysDo.

ToaccesselementSinapythonlist, verwenden Indexing, Negativindexing, Slicing, Oriteration.1) IndexingStartsat0.2) NegativeIndexingAccessses aus der THEend.3) SlicingExtractSporions.4) itererationSforloopsorenumerate.AlwaySChEckLegthtoavoidIndexerror.

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.
