JSON Pretty Printing in Python
JSON oder JavaScript Object Notation ist ein leichtes Datenaustauschformat, das häufig zum Übertragen von Daten zwischen Servern verwendet wird und Kunden. Allerdings kann es schwierig werden, JSON-Strings zu lesen und zu debuggen, wenn ihnen die richtige Einrückung und Formatierung fehlt.
Wie man eine JSON-Datei in Python hübsch ausdruckt
Zu hübsch- Um eine JSON-Datei in Python zu drucken, können Sie den Parameter indent von json.dump() oder json.dumps() verwenden. Indem Sie angeben, um wie viele Leerzeichen eingerückt werden soll, können Sie die Lesbarkeit Ihrer JSON-Strings erheblich verbessern.
Hier ist ein Beispiel für das hübsche Drucken eines JSON-Strings mit json.dumps():
import json your_json = '["foo", {"bar": ["baz", null, 1.0, 2]}]' parsed = json.loads(your_json) print(json.dumps(parsed, indent=4))
Ausgabe:
[ "foo", { "bar": [ "baz", null, 1.0, 2 ] } ]
In diesem Beispiel haben wir indent=4 angegeben, was dazu führt, dass JSON mit formatiert ist vier Einrückungsräume. Sie können diese Zahl nach Ihren Wünschen anpassen.
Um eine JSON-Datei zu verarbeiten, können Sie json.load() verwenden:
with open('filename.txt', 'r') as handle: parsed = json.load(handle)
Mit diesen Methoden können Sie JSON ganz einfach verschönern Zeichenfolgen und Dateien in Python, wodurch sie einfacher zu lesen und zu bearbeiten sind.
Das obige ist der detaillierte Inhalt vonWie kann ich JSON-Daten in Python hübsch drucken?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

Der Einfluss der Homogenität von Arrays auf die Leistung ist doppelt: 1) Homogenität ermöglicht es dem Compiler, den Speicherzugriff zu optimieren und die Leistung zu verbessern. 2) aber begrenzt die Typ -Vielfalt, was zu Ineffizienz führen kann. Kurz gesagt, die Auswahl der richtigen Datenstruktur ist entscheidend.

TocraftexecutablePythonScripts, folge theseBestPractices: 1) addashebangline (#!/Usr/bin/envpython3) tomakethescriptexcutable.2 SetPermissions withchmod xyour_script.py.3) organisation -bithacleardocstringanduseInname == "__ __": FormAcleardocstringanduseInname

NumpyarraysarebetterFornumericaloperations und multi-dimensionaldata, whilethearraymoduleiStableforbasic, an Gedächtniseffizienten

NumpyarraysarebetterforeheavynumericalComputing, während der projectwithsimpledatatypes.1) numpyarraysoferversatility und -PerformanceForlargedataSets und Compoxexoperations.2) thearraysoferversStility und Mächnory-Effefef

ctypesallowscreatingandmanipulationsc-stylearraysinpython.1) usectypestoInterfaceWithClibraryForperformance.2) createCec-stylearraysFornumericalComputationen.3) PassarrayStocfunctionsFectionFicecher-Operationen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool
