


Plots in Matplotlib für Tkinter aktualisieren
Sie sind auf Schwierigkeiten beim Aktualisieren von Plots in Matplotlib innerhalb einer Tkinter-Anwendung gestoßen. Sie ermöglichen Benutzern, die Zeitskaleneinheiten anzupassen, was eine Neuberechnung und Aktualisierung des Plots erfordert, ohne neue Plots zu erstellen.
Ansatz 1: Löschen und erneutes Plotten
Ein einfacher Weg Methode besteht darin, das vorhandene Diagramm durch Aufrufen von graph1.clear() und graph2.clear() zu löschen und dann die Daten erneut darzustellen. Es ist zwar einfacher, aber auch langsamer.
Ansatz 2: Plotdaten aktualisieren
Ein alternativer Ansatz, der deutlich schneller ist, beinhaltet die Aktualisierung der Daten vorhandener Plotobjekte. Dies erfordert eine leichte Anpassung Ihres Codes:
def plots(): global vlgaBuffSorted cntr() result = collections.defaultdict(list) for d in vlgaBuffSorted: result[d['event']].append(d) result_list = result.values() f = Figure() graph1 = f.add_subplot(211) graph2 = f.add_subplot(212, sharex=graph1) # Create plot objects vds_line, = graph1.plot([], [], 'bo', label='a') vgs_line, = graph1.plot([], [], 'rp', label='b') isub_line, = graph2.plot([], [], 'b-', label='c') for item in result_list: # Update plot data vds_line.set_data([], []) vgs_line.set_data([], []) isub_line.set_data([], []) tL = [] vgsL = [] vdsL = [] isubL = [] for dict in item: tL.append(dict['time']) vgsL.append(dict['vgs']) vdsL.append(dict['vds']) isubL.append(dict['isub']) # Update plot data vds_line.set_data(tL, vdsL) vgs_line.set_data(tL, vgsL) isub_line.set_data(tL, isubL) # Draw the plot f.canvas.draw() f.canvas.flush_events()
Bei diesem Ansatz erstellen Sie Plotobjekte (z. B. vds_line) und aktualisieren dann deren Daten bei jeder Iteration. Die Methoden „draw()“ und „flush_events()“ werden verwendet, um den aktualisierten Plot im Tkinter-Fenster anzuzeigen.
Durch die Wahl des geeigneten Ansatzes können Sie Plots in Matplotlib innerhalb Ihrer Tkinter-Anwendung effektiv aktualisieren.
Das obige ist der detaillierte Inhalt vonWie kann ich Matplotlib-Plots in einer Tkinter-Anwendung effizient aktualisieren, nachdem ich die Zeitskala geändert habe?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Der Artikel erörtert die Rolle virtueller Umgebungen in Python und konzentriert sich auf die Verwaltung von Projektabhängigkeiten und die Vermeidung von Konflikten. Es beschreibt ihre Erstellung, Aktivierung und Vorteile bei der Verbesserung des Projektmanagements und zur Verringerung der Abhängigkeitsprobleme.

Regelmäßige Ausdrücke sind leistungsstarke Tools für Musteranpassung und Textmanipulation in der Programmierung, wodurch die Effizienz bei der Textverarbeitung in verschiedenen Anwendungen verbessert wird.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Dreamweaver CS6
Visuelle Webentwicklungstools

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software