suchen
HeimBackend-EntwicklungPython-TutorialWie kann ich ein kartesisches Produkt (CROSS JOIN) in Pandas effizient durchführen?

How Can I Efficiently Perform a Cartesian Product (CROSS JOIN) in Pandas?

Effizientes kartesisches Produkt (CROSS JOIN) in Pandas

Einführung:

Kartesisches Produkt, Auch bekannt als CROSS JOIN, ist eine grundlegende Operation in der Datenanalyse. Bei Pandas geht es darum, jede Zeile eines DataFrames mit jeder Zeile eines anderen zu kombinieren. Obwohl es einfach zu verstehen ist, kann die direkte Berechnung des kartesischen Produkts rechenintensiv sein, insbesondere bei großen Datensätzen.

Best Practices:

1. Die „Schlüssel“-Spaltenmethode:

Dieser Ansatz eignet sich gut für kleine bis mittelgroße Datensätze:

def cartesian_product_key(left, right):
    return left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1)

2. NumPy-basierte Lösungen:

Für größere Datensätze bieten NumPy-basierte Lösungen eine bessere Leistung:

import numpy as np

def cartesian_product(arrays):
    la = len(arrays)
    dtype = np.result_type(*arrays)
    arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
    for i, a in enumerate(np.ix_(*arrays)):
        arr[...,i] = a
    return arr.reshape(-1, la)  

3. Generalisierter CROSS JOIN für eindeutige und nicht eindeutige Indizes:

Diese Methode kann DataFrames mit jeder Art von Index verarbeiten:

def cartesian_product_generalized(left, right):
    la, lb = len(left), len(right)
    idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
    return pd.DataFrame(
        np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))

4. Multi-DataFrame CROSS JOIN:

Dies erweitert den vorherigen Ansatz, um mehrere DataFrames zu verarbeiten:

def cartesian_product_multi(*dfs):
    idx = cartesian_product(*[np.ogrid[:len(df)] for df in dfs])
    return pd.DataFrame(
        np.column_stack([df.values[idx[:,i]] for i,df in enumerate(dfs)]))

5. Vereinfachter CROSS JOIN für zwei DataFrames:

Diese Methode, die fast so schnell ist wie das kartesische_Produkt von @senderle, ist besonders effektiv für zwei DataFrames:

def cartesian_product_simplified(left, right):
    la, lb = len(left), len(right)
    ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])

    return pd.DataFrame(
        np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))

Leistungsvergleich :

Das Benchmarking dieser Methoden bei unterschiedlichen Datensatzgrößen zeigt, dass die NumPy-basierte Lösungen übertreffen die anderen bei großen Datensätzen durchweg.

Fazit:

Die Wahl der richtigen Methode zur Berechnung des kartesischen Produkts in Pandas hängt von der Größe und den Eigenschaften von ab Ihre Datensätze. Wenn Leistung Priorität hat, entscheiden Sie sich für eine der NumPy-basierten Lösungen. Erwägen Sie aus Bequemlichkeits- und Flexibilitätsgründen die „Schlüssel“-Spaltenmethode oder den verallgemeinerten CROSS JOIN.

Das obige ist der detaillierte Inhalt vonWie kann ich ein kartesisches Produkt (CROSS JOIN) in Pandas effizient durchführen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie können Sie Elemente an eine Python -Liste anhängen?Wie können Sie Elemente an eine Python -Liste anhängen?May 04, 2025 am 12:17 AM

ToAppendElementStoapythonList, UsTheAppend () methodForsingleElelements, Extend () FormultipleElements, und INSERSt () FORSPECIFIFICEPosition.1) UseAppend () ForaddingOneElementattheend.2) usextend () toaddmultiElementsefficction.3) useInsert () toaddanelementataspeci

Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.May 04, 2025 am 12:16 AM

TocreateApythonList, usequarebrackets [] andsparateItemswithcommas.1) ListaredynamicandcanholdmixedDatatypes.2) UseAppend (), REME () und SSLICINGFORMIPLUMILATION.3) LISTCOMPRAUMENS

Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.May 04, 2025 am 12:11 AM

In den Bereichen Finanzen, wissenschaftliche Forschung, medizinische Versorgung und KI ist es entscheidend, numerische Daten effizient zu speichern und zu verarbeiten. 1) In der Finanzierung kann die Verwendung von Speicherzuordnungsdateien und Numpy -Bibliotheken die Datenverarbeitungsgeschwindigkeit erheblich verbessern. 2) Im Bereich der wissenschaftlichen Forschung sind HDF5 -Dateien für die Datenspeicherung und -abnahme optimiert. 3) In der medizinischen Versorgung verbessern die Datenbankoptimierungstechnologien wie die Indexierung und die Partitionierung die Leistung der Datenabfrage. 4) In AI beschleunigen Daten, die Sharding und das verteilte Training beschleunigen, Modelltraining. Die Systemleistung und Skalierbarkeit können erheblich verbessert werden, indem die richtigen Tools und Technologien ausgewählt und Kompromisse zwischen Speicher- und Verarbeitungsgeschwindigkeiten abgewogen werden.

Wie erstellt man ein Python -Array? Geben Sie ein Beispiel an.Wie erstellt man ein Python -Array? Geben Sie ein Beispiel an.May 04, 2025 am 12:10 AM

PythonarraysSureScreeatedusedhearrayModule, nicht gebaute Inlikelisten.1) ImportThearrayModule.2) Spezifizieren Sie die THETYPECODE, z.

Was sind einige Alternativen zur Verwendung einer Shebang -Linie, um den Python -Dolmetscher anzugeben?Was sind einige Alternativen zur Verwendung einer Shebang -Linie, um den Python -Dolmetscher anzugeben?May 04, 2025 am 12:07 AM

Zusätzlich zur Shebang -Linie gibt es viele Möglichkeiten, einen Python -Interpreter anzugeben: 1. Verwenden Sie Python -Befehle direkt aus der Befehlszeile; 2. Verwenden Sie Stapeldateien oder Shell -Skripte. 3.. Verwenden Sie Build -Tools wie Make oder CMake; 4. Verwenden Sie Aufgabenläufer wie Invoke. Jede Methode hat ihre Vor- und Nachteile, und es ist wichtig, die Methode auszuwählen, die den Anforderungen des Projekts entspricht.

Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?May 03, 2025 am 12:11 AM

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.May 03, 2025 am 12:10 AM

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Wie geben Sie den Datentyp der Elemente in einem Python -Array an?Wie geben Sie den Datentyp der Elemente in einem Python -Array an?May 03, 2025 am 12:06 AM

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)