Die virtuelle C-Vererbung verstehen
In der objektorientierten Programmierung ist die virtuelle Vererbung ein Mechanismus, der das Diamantproblem löst, zu dem Mehrfachvererbung führen kann zu Mehrdeutigkeiten bei der Objektinitialisierung führen. Betrachten Sie den folgenden Codeausschnitt:
class Base { public: Base(Base* pParent); /* implements basic stuff */ }; class A : virtual public Base { public: A(A* pParent) : Base(pParent) {} /* ... */ }; class B : virtual public Base { public: B(B* pParent) : Base(pParent) {} /* ... */ }; class C : public A, public B { public: C(C* pParent) : A(pParent), B(pParent) {} // - Compilation error here /* ... */ };
Beim Versuch, diesen Code zu kompilieren, meldet GCC einen Kompilierungsfehler in der markierten Zeile. Der Grund für diesen Fehler liegt darin, wie sich die virtuelle Vererbung von der regulären Vererbung unterscheidet.
Virtuelle Vererbung führt eine indirekte Beziehung zwischen der am stärksten abgeleiteten Klasse und der virtuellen Basisklasse ein. In diesem Fall erbt C nicht direkt von Base, sondern über seine virtuellen Basisklassen A und B. Das bedeutet, dass die Initialisierung von Base im Konstruktor von C an den am stärksten abgeleiteten Klassenkonstruktor delegiert wird, in diesem Fall C .
C initialisiert das Basis-Unterobjekt jedoch nicht explizit in seiner Initialisierungsliste. Daher muss der Standardkonstruktor für Base aufgerufen werden, um dieses Unterobjekt zu initialisieren. Allerdings ist der Standardkonstruktor für Base im Rahmen des Konstruktors von C nicht zugänglich, da es sich nicht um eine direkte Basisklasse von C handelt.
Um dieses Problem zu beheben, muss C den Standardkonstruktor für Base explizit in seiner Klasse aufrufen Initialisierungsliste. Dadurch wird sichergestellt, dass das virtuelle Basis-Unterobjekt ordnungsgemäß initialisiert wird. Der korrigierte Code würde so aussehen:
class C : public A, public B { public: C(C* pParent) : A(pParent), B(pParent), Base() {} // - Explicit call to Base() /* ... */ };
Das obige ist der detaillierte Inhalt vonWie löst die virtuelle Vererbung das Diamantproblem in C?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

In diesem Artikel werden die C -Standard -Vorlagenbibliothek (STL) erläutert, die sich auf seine Kernkomponenten konzentriert: Container, Iteratoren, Algorithmen und Funktoren. Es wird beschrieben, wie diese interagieren, um die generische Programmierung, die Verbesserung der Codeeffizienz und die Lesbarkeit t zu ermöglichen

Dieser Artikel beschreibt die effiziente Verwendung von STL -Algorithmus in c. Es betont die Auswahl der Datenstruktur (Vektoren vs. Listen), Algorithmus -Komplexitätsanalyse (z. B. std :: sortieren vs. std :: partial_sort), Iteratoranwendungen und parallele Ausführung. Häufige Fallstricke wie

In diesem Artikel wird die effektive Ausnahmebehandlung in C, Covering Try, Catch und Wurp Mechanics, beschrieben. Es betont Best Practices wie Raii, die Vermeidung unnötiger Fangblöcke und die Protokollierung von Ausnahmen für robusten Code. Der Artikel befasst sich auch mit Perf

In dem Artikel wird die Verwendung von Move Semantics in C erörtert, um die Leistung zu verbessern, indem unnötiges Kopieren vermieden wird. Es umfasst die Implementierung von Bewegungskonstruktoren und Zuordnungsbetreibern unter Verwendung von STD :: MOVE

C 20 -Bereiche verbessern die Datenmanipulation mit Ausdruckskraft, Komposition und Effizienz. Sie vereinfachen komplexe Transformationen und integrieren sich in vorhandene Codebasen, um eine bessere Leistung und Wartbarkeit zu erhalten.

In dem Artikel wird der dynamische Versand in C, seine Leistungskosten und Optimierungsstrategien erörtert. Es unterstreicht Szenarien, in denen der dynamische Versand die Leistung beeinflusst, und vergleicht sie mit statischer Versand, wobei die Kompromisse zwischen Leistung und Betonung betont werden

Artikel erörtert den effektiven Einsatz von RValue -Referenzen in C für Bewegungssemantik, perfekte Weiterleitung und Ressourcenmanagement, wobei Best Practices und Leistungsverbesserungen hervorgehoben werden. (159 Charaktere)

C Speicherverwaltung verwendet neue, löschende und intelligente Zeiger. In dem Artikel werden manuelle und automatisierte Verwaltung erörtert und wie intelligente Zeiger Speicherlecks verhindern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung