


Wie finde ich effizient Zeilenindizes bestimmter Werte in einem NumPy-Array?
Den Index spezifischer Werte in einem NumPy-Array finden
Problem:
Bestimmen Sie bei einem gegebenen Array X die Zeilenindizes der angegebenen Werte, die in searched_values gespeichert sind. Im folgenden Beispiel suchen wir beispielsweise nach den Indizes für Werte [4, 2], [3, 3] und [5, 6] innerhalb des Arrays X.
X = np.array([[4, 2], [9, 3], [8, 5], [3, 3], [5, 6]]) searched_values = np.array([[4, 2], [3, 3], [5, 6]])
Die gewünschte Ausgabe wäre:
[0, 3, 4]
Lösungen:
Ansatz 1: NumPy Broadcasting
ist eine Möglichkeit, np.where zu nutzen und die Broadcasting-Funktionen sind wie folgt.
np.where((X == searched_values[:, None]).all(-1))[1]
Ansatz 2: Speichereffiziente lineare Indexkonvertierung
So konvertieren Sie jede Zeile mit NumPys np.ravel_multi_index in einen eindeutigen linearen Index. Es gibt.
dims = X.max(0) + 1 out = np.where(np.in1d(np.ravel_multi_index(X.T, dims), np.ravel_multi_index(searched_values.T, dims)))[0]
Ansatz 3: Speichereffiziente und optimierte lineare Indexkonvertierung
NumPys np.searchsorted kann auch verwendet werden, um lineare Indizes schnell zu finden.
dims = X.max(0) + 1 X1D = np.ravel_multi_index(X.T, dims) searched_valuesID = np.ravel_multi_index(searched_values.T, dims) sidx = X1D.argsort() out = sidx[np.searchsorted(X1D, searched_valuesID, sorter=sidx)]
So funktioniert np.ravel_multi_index:
np.ravel_multi_index erstellt eine lineare Indexdarstellung eines mehrdimensionalen Index. Interpretieren Sie jede Zeile als Index in einem n-dimensionalen mehrdimensionalen Array und generieren Sie den entsprechenden linearen Index.
Beispiel: Anwenden von np.ravel_multi_index(X.T, dims) auf ein Beispielarray X:
np.ravel_multi_index(X.T, dims) # Output: array([30, 66, 61, 24, 41])
Dies stellt den linearen Index dar, den jede Zeile des Arrays X hat. Dieser lineare Index kann verwendet werden, um jede Zeile im Array eindeutig zu identifizieren.
Der Beispielcode für jede Methode ist unten aufgeführt.
# Approach 1 print(np.where((X == searched_values[:, None]).all(-1))[1]) # Approach 2 dims = X.max(0) + 1 print(np.where(np.in1d(np.ravel_multi_index(X.T, dims), np.ravel_multi_index(searched_values.T, dims)))[0]) # Approach 3 dims = X.max(0) + 1 X1D = np.ravel_multi_index(X.T, dims) searched_valuesID = np.ravel_multi_index(searched_values.T, dims) sidx = X1D.argsort() print(sidx[np.searchsorted(X1D, searched_valuesID, sorter=sidx)])
Mit beiden Ansätzen können Sie den Zeilenindex eines bestimmten Werts in Array X leicht ermitteln.
Das obige ist der detaillierte Inhalt vonWie finde ich effizient Zeilenindizes bestimmter Werte in einem NumPy-Array?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

PythonlistscanstoreanyDatatype, ArrayModulearraysStoreOnetype und NumpyarraysarefornumericalComputations.1) listet dieArversatile-memory-effizient.2) Arraymodulenarraysalememory-effizientforhomogeneData.3) Numpharraysareoptional-EffictionhomogenInData.3) nummodulenarraysoptionalinformanceIntata.3) nummodulearraysoptionalinformanceIntata.3) NumpharraysareoPresopplowancalinScesDataa.3) NumpharraysoePerformance

Wenn SietostoreavalueOfThewrongdatatypeinapythonarray, touencounteratypeerror.Thissisdustuetothearraymodules -SstrictTypeNeen -Forcortion, welche

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

ThescriptisrunningwithTheWrongPythonversionDuetoincorrectDefaultinterpretersettings.tofixthis: 1) checkHedEfaultpythonversionusingPython-Versionorpython3-Version.2) Verwenden von VirtualenVirmentsByCreatingonewithpython3.9-mvenvmyenv, und -Averifikation und -Averifikation

PythonarraysSupportvariousoperationen: 1) SlicicingExtractsSubsets, 2) Anhang/Erweiterungen, 3) Einfügen von PlaceSelementsatspezifischePositionen, 4) Entfernen von Delettel, 5) Sortieren/ReversingChangesorder und 6) compredewlistenwlists basierte basierte, basierte Zonexistin

NumpyarraysaresessentialForApplicationsRequeeFoughnumericalComputations und Datamanipulation

UseanArray.ArrayoveralistinpythonwhendealingwithhomogenousData, Performance-CriticalCode, OrInterfacingwithCcode.1) HomogenousData: ArraysSavemoryWithtypedElements.2) Performance-CriticalCode: ArraySaveMoryWithtypedElements.2) Performance-CriticalCode: ArraysFerbetterPerPterPerProrMtorChorescomeChormericalcoricalomancomeChormericalicalomentorMentumscritorcorements.3) Interf

Nein, NOTALLLISTOPERATIONSARESURDEDBYARAYS UNDVICEVERSA.1) ArraysDonotsupportdynamicoperationslikeAppendorinStResizing, die impactSperformance.2) listsDonotguaranteConstantTimeComplexityfordirectAccesslikearraysDo.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool
