suchen
HeimBackend-EntwicklungPython-TutorialWie finde ich effizient Zeilenindizes bestimmter Werte in einem NumPy-Array?

How to Efficiently Find Row Indices of Specific Values in a NumPy Array?

Den Index spezifischer Werte in einem NumPy-Array finden

Problem:

Bestimmen Sie bei einem gegebenen Array X die Zeilenindizes der angegebenen Werte, die in searched_values ​​gespeichert sind. Im folgenden Beispiel suchen wir beispielsweise nach den Indizes für Werte [4, 2], [3, 3] und [5, 6] innerhalb des Arrays X.

X = np.array([[4,  2],
              [9,  3],
              [8,  5],
              [3,  3],
              [5,  6]])

searched_values = np.array([[4, 2],
                            [3, 3],
                            [5, 6]])

Die gewünschte Ausgabe wäre:

[0, 3, 4]

Lösungen:

Ansatz 1: NumPy Broadcasting

ist eine Möglichkeit, np.where zu nutzen und die Broadcasting-Funktionen sind wie folgt.

np.where((X == searched_values[:, None]).all(-1))[1]

Ansatz 2: Speichereffiziente lineare Indexkonvertierung

So konvertieren Sie jede Zeile mit NumPys np.ravel_multi_index in einen eindeutigen linearen Index. Es gibt.

dims = X.max(0) + 1
out = np.where(np.in1d(np.ravel_multi_index(X.T, dims),
                       np.ravel_multi_index(searched_values.T, dims)))[0]

Ansatz 3: Speichereffiziente und optimierte lineare Indexkonvertierung

NumPys np.searchsorted kann auch verwendet werden, um lineare Indizes schnell zu finden.

dims = X.max(0) + 1
X1D = np.ravel_multi_index(X.T, dims)
searched_valuesID = np.ravel_multi_index(searched_values.T, dims)
sidx = X1D.argsort()
out = sidx[np.searchsorted(X1D, searched_valuesID, sorter=sidx)]

So funktioniert np.ravel_multi_index:

np.ravel_multi_index erstellt eine lineare Indexdarstellung eines mehrdimensionalen Index. Interpretieren Sie jede Zeile als Index in einem n-dimensionalen mehrdimensionalen Array und generieren Sie den entsprechenden linearen Index.

Beispiel: Anwenden von np.ravel_multi_index(X.T, dims) auf ein Beispielarray X:

np.ravel_multi_index(X.T, dims)
# Output: array([30, 66, 61, 24, 41])

Dies stellt den linearen Index dar, den jede Zeile des Arrays X hat. Dieser lineare Index kann verwendet werden, um jede Zeile im Array eindeutig zu identifizieren.

Der Beispielcode für jede Methode ist unten aufgeführt.

# Approach 1
print(np.where((X == searched_values[:, None]).all(-1))[1])

# Approach 2
dims = X.max(0) + 1
print(np.where(np.in1d(np.ravel_multi_index(X.T, dims),
                       np.ravel_multi_index(searched_values.T, dims)))[0])

# Approach 3
dims = X.max(0) + 1
X1D = np.ravel_multi_index(X.T, dims)
searched_valuesID = np.ravel_multi_index(searched_values.T, dims)
sidx = X1D.argsort()
print(sidx[np.searchsorted(X1D, searched_valuesID, sorter=sidx)])

Mit beiden Ansätzen können Sie den Zeilenindex eines bestimmten Werts in Array X leicht ermitteln.

Das obige ist der detaillierte Inhalt vonWie finde ich effizient Zeilenindizes bestimmter Werte in einem NumPy-Array?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Welche Datentypen können in einem Python -Array gespeichert werden?Welche Datentypen können in einem Python -Array gespeichert werden?Apr 27, 2025 am 12:11 AM

PythonlistscanstoreanyDatatype, ArrayModulearraysStoreOnetype und NumpyarraysarefornumericalComputations.1) listet dieArversatile-memory-effizient.2) Arraymodulenarraysalememory-effizientforhomogeneData.3) Numpharraysareoptional-EffictionhomogenInData.3) nummodulenarraysoptionalinformanceIntata.3) nummodulearraysoptionalinformanceIntata.3) NumpharraysareoPresopplowancalinScesDataa.3) NumpharraysoePerformance

Was passiert, wenn Sie versuchen, einen Wert des falschen Datentyps in einem Python -Array zu speichern?Was passiert, wenn Sie versuchen, einen Wert des falschen Datentyps in einem Python -Array zu speichern?Apr 27, 2025 am 12:10 AM

Wenn SietostoreavalueOfThewrongdatatypeinapythonarray, touencounteratypeerror.Thissisdustuetothearraymodules -SstrictTypeNeen -Forcortion, welche

Welches ist Teil der Python Standard Library: Listen oder Arrays?Welches ist Teil der Python Standard Library: Listen oder Arrays?Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Was sollten Sie überprüfen, ob das Skript mit der falschen Python -Version ausgeführt wird?Was sollten Sie überprüfen, ob das Skript mit der falschen Python -Version ausgeführt wird?Apr 27, 2025 am 12:01 AM

ThescriptisrunningwithTheWrongPythonversionDuetoincorrectDefaultinterpretersettings.tofixthis: 1) checkHedEfaultpythonversionusingPython-Versionorpython3-Version.2) Verwenden von VirtualenVirmentsByCreatingonewithpython3.9-mvenvmyenv, und -Averifikation und -Averifikation

Was sind einige gängige Operationen, die an Python -Arrays ausgeführt werden können?Was sind einige gängige Operationen, die an Python -Arrays ausgeführt werden können?Apr 26, 2025 am 12:22 AM

PythonarraysSupportvariousoperationen: 1) SlicicingExtractsSubsets, 2) Anhang/Erweiterungen, 3) Einfügen von PlaceSelementsatspezifischePositionen, 4) Entfernen von Delettel, 5) Sortieren/ReversingChangesorder und 6) compredewlistenwlists basierte basierte, basierte Zonexistin

In welchen Anwendungsarten werden häufig Numpy -Arrays verwendet?In welchen Anwendungsarten werden häufig Numpy -Arrays verwendet?Apr 26, 2025 am 12:13 AM

NumpyarraysaresessentialForApplicationsRequeeFoughnumericalComputations und Datamanipulation

Wann würden Sie ein Array über eine Liste in Python verwenden?Wann würden Sie ein Array über eine Liste in Python verwenden?Apr 26, 2025 am 12:12 AM

UseanArray.ArrayoveralistinpythonwhendealingwithhomogenousData, Performance-CriticalCode, OrInterfacingwithCcode.1) HomogenousData: ArraysSavemoryWithtypedElements.2) Performance-CriticalCode: ArraySaveMoryWithtypedElements.2) Performance-CriticalCode: ArraysFerbetterPerPterPerProrMtorChorescomeChormericalcoricalomancomeChormericalicalomentorMentumscritorcorements.3) Interf

Werden alle Listenoperationen von Arrays unterstützt und umgekehrt? Warum oder warum nicht?Werden alle Listenoperationen von Arrays unterstützt und umgekehrt? Warum oder warum nicht?Apr 26, 2025 am 12:05 AM

Nein, NOTALLLISTOPERATIONSARESURDEDBYARAYS UNDVICEVERSA.1) ArraysDonotsupportdynamicoperationslikeAppendorinStResizing, die impactSperformance.2) listsDonotguaranteConstantTimeComplexityfordirectAccesslikearraysDo.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool