Kauf mir einen Kaffee☕
*Mein Beitrag erklärt KMNIST.
KMNIST() kann den KMNIST-Datensatz wie unten gezeigt verwenden:
*Memos:
- Das 1. Argument ist root(Required-Type:str oder pathlib.Path). *Ein absoluter oder relativer Pfad ist möglich.
- Das 2. Argument ist train(Optional-Default:True-Type:bool). *Wenn es wahr ist, werden Trainingsdaten (60.000 Bilder) verwendet, während wenn es falsch ist, Testdaten (10.000 Bilder) verwendet werden.
- Das dritte Argument ist transform(Optional-Default:None-Type:callable).
- Das 4. Argument ist target_transform(Optional-Default:None-Type:callable).
- Das 5. Argument ist download(Optional-Default:False-Type:bool):
*Memos:
- Wenn es wahr ist, wird der Datensatz aus dem Internet heruntergeladen und in das Stammverzeichnis extrahiert (entpackt).
- Wenn es „True“ ist und der Datensatz bereits heruntergeladen wurde, wird er extrahiert.
- Wenn es „True“ ist und der Datensatz bereits heruntergeladen und extrahiert wurde, passiert nichts.
- Es sollte „False“ sein, wenn der Datensatz bereits heruntergeladen und extrahiert wurde, da es schneller ist.
- Sie können den Datensatz hier manuell herunterladen und extrahieren, um ihn z. data/KMNIST/raw/.
from torchvision.datasets import KMNIST train_data = KMNIST( root="data" ) train_data = KMNIST( root="data", train=True, transform=None, target_transform=None, download=False ) test_data = KMNIST( root="data", train=False ) len(train_data), len(test_data) # (60000, 10000) train_data # Dataset KMNIST # Number of datapoints: 60000 # Root location: data # Split: Train train_data.root # 'data' train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method mnist.download of dataset kmnist number datapoints: root location: data split: train> train_data[0] # (<pil.image.image image mode="L" size="28x28">, 8) train_data[1] # (<pil.image.image image mode="L" size="28x28">, 7) train_data[2] # (<pil.image.image image mode="L" size="28x28">, 0) train_data[3] # (<pil.image.image image mode="L" size="28x28">, 1) train_data[4] # (<pil.image.image image mode="L" size="28x28">, 4) train_data.classes # ['o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo'] </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
from torchvision.datasets import KMNIST train_data = KMNIST( root="data", train=True ) test_data = KMNIST( root="data", train=False ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data)
Das obige ist der detaillierte Inhalt vonKMNIST in PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

Der Einfluss der Homogenität von Arrays auf die Leistung ist doppelt: 1) Homogenität ermöglicht es dem Compiler, den Speicherzugriff zu optimieren und die Leistung zu verbessern. 2) aber begrenzt die Typ -Vielfalt, was zu Ineffizienz führen kann. Kurz gesagt, die Auswahl der richtigen Datenstruktur ist entscheidend.

TocraftexecutablePythonScripts, folge theseBestPractices: 1) addashebangline (#!/Usr/bin/envpython3) tomakethescriptexcutable.2 SetPermissions withchmod xyour_script.py.3) organisation -bithacleardocstringanduseInname == "__ __": FormAcleardocstringanduseInname

NumpyarraysarebetterFornumericaloperations und multi-dimensionaldata, whilethearraymoduleiStableforbasic, an Gedächtniseffizienten

NumpyarraysarebetterforeheavynumericalComputing, während der projectwithsimpledatatypes.1) numpyarraysoferversatility und -PerformanceForlargedataSets und Compoxexoperations.2) thearraysoferversStility und Mächnory-Effefef

ctypesallowscreatingandmanipulationsc-stylearraysinpython.1) usectypestoInterfaceWithClibraryForperformance.2) createCec-stylearraysFornumericalComputationen.3) PassarrayStocfunctionsFectionFicecher-Operationen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

Dreamweaver CS6
Visuelle Webentwicklungstools

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.
