


Prozentsatz des Gesamtumsatzes mit Groupby in Pandas
Die Berechnung des Prozentsatzes des Umsatzes, den jedes Büro innerhalb eines Staates beisteuert, erfordert einen differenzierten Ansatz in Pandas. Durch einfaches Gruppieren nach „Bundesstaat“ und „Büro-ID“ erhalten Sie zwar die Summe der Verkäufe für jedes Büro, aber nicht den prozentualen Beitrag innerhalb des Bundesstaates.
Um dies zu erreichen, müssen Sie zunächst eine Gruppierung nach erstellen Objekt basierend auf „state“ und „office_id“. Dadurch erhalten Sie einen Datenrahmen mit der Verkaufsspalte, die die Gesamtverkäufe für jede Büro-Bundesstaat-Kombination enthält:
state_office = df.groupby(['state', 'office_id']).agg({'sales': 'sum'})
Um den Prozentsatz zu berechnen, können Sie die Verkäufe jedes Büros durch die Gesamtverkäufe für diesen Bundesstaat dividieren. Um jedoch auf die Gesamtverkäufe für jeden Bundesstaat innerhalb der Groupby zuzugreifen, müssen Sie ein zweites Groupby-Objekt basierend auf „state“ erstellen:
state_total = df.groupby('state').agg({'sales': 'sum'})
Mit diesem Objekt können Sie die Groupby „state_office“ um erweitern eine neue Spalte, die den Prozentsatz der Verkäufe für jede Büro-Staats-Kombination enthält:
state_pcts = state_office.groupby(level=0).apply(lambda x: 100 * x / float(state_total.loc[x.name]))
Beachten Sie, dass sich der Parameter „level=0“ in „groupby“ auf die oberste Ebene der bezieht Mehrstufiger Index, der aus der ursprünglichen Gruppe nach „Bundesstaat“ und „Büro-ID“ gebildet wird.
Dieser Ansatz stellt sicher, dass der Umsatzprozentsatz jedes Büros anhand der Gesamtverkäufe innerhalb des jeweiligen Bundesstaates berechnet wird.
Das obige ist der detaillierte Inhalt vonWie berechnet man mit Pandas den Prozentsatz des Umsatzes pro Büro in jedem Bundesstaat?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools
