


Wie lade ich eine große Datei (≥3 GB) in das FastAPI-Backend hoch?
FastAPI kann Dateien mit mehr als 1 MB verarbeiten, indem Teile der Datei abgerufen werden nacheinander aus dem Anfragetext. Durch diesen Ansatz entfällt die Notwendigkeit, die gesamte Datei in den Speicher zu laden, was beim Umgang mit großen Dateien empfohlen wird.
Clientseitige Anforderung:
m = MultipartEncoder(fields = {"upload_file":open(file_name,'rb')}) prefix = "http://xxx:5000" url = "{}/v1/uploadfiles".format(prefix) try: req = requests.post( url, data=m, verify=False, )
Serverseitige Antwort:
HTTP 422 {"detail":[{"loc":["body","upload_file"],"msg":"field required","type":"value_error.missing"}]}
Grund dafür Fehler:
Der Fehler tritt auf, weil die clientseitige Anfrage den Content-Type-Header weglässt. FastAPI erwartet, dass der Client beim Hochladen von Dateien mehrteilige/Formulardatenanfragen sendet. Ohne den Content-Type-Header kann FastAPI den Anfragetext nicht korrekt analysieren.
Lösung 1 (empfohlen): Verwendung von Streaming-Datei-Uploads und Chunk-Encoded-Anfragen
HTTPX-Bibliothek unterstützt standardmäßig das Hochladen von Streaming-Dateien, sodass Sie Dateien senden können, ohne sie vollständig zu laden Speicher.
Beispiel:
import httpx import time url = 'http://127.0.0.1:8000/upload' files = {'file': open('bigFile.zip', 'rb')} headers = {'Filename': 'bigFile.zip'} data = {'data': 'Hello World!'} with httpx.Client() as client: start = time.time() r = client.post(url, data=data, files=files, headers=headers) end = time.time() print(f'Time elapsed: {end - start}s') print(r.status_code, r.json(), sep=' ')
Lösung 2: Bibliothek „streaming_form_data“ verwenden
Diese Bibliothek stellt ein Streaming-Multipart/Formular bereit -Datenparser für Python, der es Ihnen ermöglicht, mehrteilige/Formulardatenanfragen zu analysieren, ohne den gesamten Anfragetext vollständig zu laden Erinnerung.
Beispiel:
from streaming_form_data import StreamingFormDataParser from streaming_form_data.targets import FileTarget, ValueTarget app = FastAPI() MAX_REQUEST_BODY_SIZE = 1024 * 1024 * 1024 * 4 # = 4GB MAX_FILE_SIZE = 1024 * 1024 * 1024 * 3 # = 3GB @app.post('/upload') async def upload(request: Request): parser = StreamingFormDataParser(headers=request.headers) filename = request.headers.get('Filename') file_ = FileTarget('./' + filename) data = ValueTarget() parser.register('file', file_) parser.register('data', data) body_validator = MaxBodySizeValidator(MAX_REQUEST_BODY_SIZE) file_validator = MaxSizeValidator(MAX_FILE_SIZE) async for chunk in request.stream(): body_validator(chunk) parser.data_received(chunk)
Das obige ist der detaillierte Inhalt vonWie lade ich große Dateien (≥3 GB) effektiv auf ein FastAPI-Backend hoch?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc

ListsandNumPyarraysinPythonhavedifferentmemoryfootprints:listsaremoreflexiblebutlessmemory-efficient,whileNumPyarraysareoptimizedfornumericaldata.1)Listsstorereferencestoobjects,withoverheadaround64byteson64-bitsystems.2)NumPyarraysstoredatacontiguou

TensurepythonscriptsBehavectelyAcrossdevelopment, Staging und Produktion, UsethesStrategien: 1) Umweltvariablenforsimplesettings, 2) configurationFilesForComplexSetups und 3) dynamikloadingForAdaptability.eachMethodofferiqueNefits und Requiresca

Die grundlegende Syntax für die Python -Liste ist die Liste [START: STOP: STEP]. 1.Start ist der erste Elementindex, 2.Stop ist der erste Elementindex, und 3.Step bestimmt die Schrittgröße zwischen den Elementen. Scheiben werden nicht nur zum Extrahieren von Daten verwendet, sondern auch zum Ändern und Umkehrlisten.

ListSoutPer -CharakterArraysin: 1) Dynamics und Dynamics und 3), 2) StoringHeterogenData und 3) MemoryefficiencyForSparsedata, ButmayHavesLightPerformanceCostIncustonTectorationOperationen.

Toconvertapythonarraytoalist, Usethelist () constructororageneratorexpression.1) ImportThearrayModuleandCreateanarray.2) Uselist (arr) oder [xForxinarr] Toconvertittoalist in Betracht, überlegt Performance undMoryefficiencyForlargedatasets.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Dreamweaver Mac
Visuelle Webentwicklungstools
