suchen
HeimBackend-EntwicklungPython-TutorialWie lade ich große Dateien effizient mit FastAPI hoch?

How to Efficiently Upload Large Files with FastAPI?

Hochladen großer Dateien mit der Serverseite von FastAPI

Der FastAPI-Server kann das Hochladen großer Dateien mithilfe der UploadFile-Klasse verarbeiten. Hier ist ein Beispiel:

async def uploadfiles(upload_file: UploadFile = File(...)):
    ...

Problem mit clientseitigen Anfragen

Beim Senden großer Dateien vom Client können aus folgenden Gründen Probleme auftreten:

  1. multipart/form-data Header: Die Anfrage des Clients sollte den Content-Type-Header als angeben multipart/form-data, gefolgt von der erforderlichen Grenzzeichenfolge. Wenn Sie jedoch keine Bibliothek zum Verarbeiten von Datei-Uploads verwenden, müssen Sie diesen Header manuell festlegen.
  2. MultipartEncoder-Verwendung: Stellen Sie sicher, dass der MultipartEncoder den Dateinamen einschließt, wenn er das Feld für upload_file deklariert.
  3. Bibliotheksempfehlungen: Verwendung veralteter Bibliotheken (z. B. request-toolbelt) für Datei-Uploads wird nicht empfohlen. Erwägen Sie stattdessen die Verwendung von Python-Anfragen oder HTTPX, da diese eine bessere Unterstützung für das Hochladen großer Dateien bieten.

Schnellere Option mit .stream()

Durch Zugriff auf die Anfrage body als Stream speichern, können Sie vermeiden, die gesamte Datei in den Speicher zu laden, was zu schnelleren Uploads führt. Dies kann mit der Methode .stream() erreicht werden. Hier ist ein Beispiel für die Verwendung der Streaming-Form-Data-Bibliothek:

from streaming_form_data import StreamingFormDataParser
from streaming_form_data.targets import FileTarget
request_body = await request.stream()
parser = StreamingFormDataParser(headers=request.headers)
parser.register('upload_file', FileTarget(filepath))
async for chunk in request_body:
    parser.data_received(chunk)

Alternative Option mit UploadFile und Form

Wenn Sie lieber einen regulären Verteidigungsendpunkt verwenden möchten, sind Sie hier richtig kann Datei-Uploads wie folgt verarbeiten:

from fastapi import File, UploadFile, Form, HTTPException, status
import aiofiles
import os

CHUNK_SIZE = 1024 * 1024

@app.post("/upload")
async def upload(file: UploadFile = File(...), data: str = Form(...)):
    try:
        filepath = os.path.join('./', os.path.basename(file.filename))
        async with aiofiles.open(filepath, 'wb') as f:
            while chunk := await file.read(CHUNK_SIZE):
                await f.write(chunk)
    except Exception:
        raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
                            detail='There was an error uploading the file')
    finally:
        await file.close()

    return {"message": f"Successfuly uploaded {file.filename}"}

HTTPX-Client erhöhen Timeout

Bei Verwendung der HTTPX-Bibliothek müssen Sie möglicherweise das Timeout erhöhen, um Lese-Timeouts beim Hochladen großer Dateien zu verhindern.

timeout = httpx.Timeout(None, read=180.0)

Das obige ist der detaillierte Inhalt vonWie lade ich große Dateien effizient mit FastAPI hoch?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Sind Python -Listen dynamische Arrays oder verknüpfte Listen unter der Haube?Sind Python -Listen dynamische Arrays oder verknüpfte Listen unter der Haube?May 07, 2025 am 12:16 AM

PythonlistsarEmplementedasdynamicArrays, Notlinkedlists.1) Sie haben incontuituousMemoryblocks, die ausgelöst werden, wobei die Auswirkungen auf die Erfüllung von Zeitungen/Deletionsbutionen, die in Verbindung gebracht wurden

Wie entfernen Sie Elemente aus einer Python -Liste?Wie entfernen Sie Elemente aus einer Python -Liste?May 07, 2025 am 12:15 AM

PythonoffersfourmainMethodstoremoveLements Fromalist: 1) Entfernen (Wert) removesthefirstoccurceofavalue, 2) Pop (index) removesandreturnsanelementataspecifiedIndex, 3) DelstatementRemovesElementsbyIntexors und 4) clear () removesallitems

Was sollten Sie überprüfen, wenn Sie einen Fehler 'Erlaubnis abgelehnt' erhalten, wenn Sie versuchen, ein Skript auszuführen?Was sollten Sie überprüfen, wenn Sie einen Fehler 'Erlaubnis abgelehnt' erhalten, wenn Sie versuchen, ein Skript auszuführen?May 07, 2025 am 12:12 AM

ToreSolvea "Berechtigte" FehlerwherunningAscript, folgen von THESESTEPS: 1) checkandadjustThescript'SPERMISSIONSCHMOD XMYSCRIPT.SHTOMAKEPEXEx.

Wie werden Arrays in der Bildverarbeitung mit Python verwendet?Wie werden Arrays in der Bildverarbeitung mit Python verwendet?May 07, 2025 am 12:04 AM

ArraysArecrucialinpythonimageprozessingastheyEnableEfficienceManipulationandanalysisOfimagedata.1) ImagesAreconvertedtonumpyarrays, With GraysCaleiMageSas2DarraysandcolorimagesAsAsAsSasAsAnsAsSAs3darrays.2) arraysallowvectorizedoperationen, Enablingfast -Anhaftungen wie Brei

Für welche Arten von Operationen sind Arrays erheblich schneller als Listen?Für welche Arten von Operationen sind Arrays erheblich schneller als Listen?May 07, 2025 am 12:01 AM

ARRAYSELIFICIENTIONIERTFASTERTHANLISTENFOROPERATIONSBENFITEDFROMDIRECTMEMORYACCESSANDFIXED-SZESTRUCTURES.1) Zugriffselemente: ArraysProvideConstant-TimeaccessDuetocontuousMemoryStorage.2) Iteration: ArraysLeverageCachelocityFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterFasterfaster.3) mem

Erläutern Sie die Leistungsunterschiede in den Elementvorgängen zwischen Listen und Arrays.Erläutern Sie die Leistungsunterschiede in den Elementvorgängen zwischen Listen und Arrays.May 06, 2025 am 12:15 AM

ArraysArebetterForElement-wiseoperationsduetofAcalAccessandoptimizedImplementationen.1) ArrayShaveContuituousMeMoryfordirectAccess, EnhancingPerformance.2) LISTSAREFLEFLEFELTIBLEISEMEMORTUMEMORTUREDIRECTELACESS.

Wie können Sie mathematische Operationen in ganzen Numpy -Arrays effizient ausführen?Wie können Sie mathematische Operationen in ganzen Numpy -Arrays effizient ausführen?May 06, 2025 am 12:15 AM

Mathematische Operationen des gesamten Arrays in Numpy können durch vektorisierte Operationen effizient implementiert werden. 1) Verwenden Sie einfache Operatoren wie Addition (arr 2), um Operationen in Arrays durchzuführen. 2) Numpy verwendet die zugrunde liegende C -Sprachbibliothek, die die Rechengeschwindigkeit verbessert. 3) Sie können komplexe Operationen wie Multiplikation, Abteilung und Exponenten ausführen. 4) Achten Sie auf Rundfunkoperationen, um sicherzustellen, dass die Array -Form kompatibel ist. 5) Die Verwendung von Numpy -Funktionen wie NP.SUM () kann die Leistung erheblich verbessern.

Wie setzen Sie Elemente in ein Python -Array ein?Wie setzen Sie Elemente in ein Python -Array ein?May 06, 2025 am 12:14 AM

In Python gibt es zwei Hauptmethoden zum Einfügen von Elementen in eine Liste: 1) Mit der Methode Insert (Index, Wert) können Sie Elemente in den angegebenen Index einfügen, das Einfügen jedoch zu Beginn einer großen Liste ineffizient einfügen. 2) Fügen Sie mit der Methode des Appends (Wert) Elemente am Ende der Liste hinzu, was hocheffizient ist. Für große Listen wird empfohlen, append () zu verwenden oder die Verwendung von Deque- oder Numpy -Arrays zu verwenden, um die Leistung zu optimieren.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung