


Problem des verschwindenden und explodierenden Gradienten und sterbendes ReLU-Problem
Kauf mir einen Kaffee☕
*Memos:
- Mein Beitrag erklärt Overfitting und Underfitting.
- Mein Beitrag erklärt Ebenen in PyTorch.
- Mein Beitrag erklärt Aktivierungsfunktionen in PyTorch.
- Mein Beitrag erklärt Verlustfunktionen in PyTorch.
- Mein Beitrag erklärt Optimierer in PyTorch.
Problem des verschwindenden Gradienten:
- Wenn während der Backpropagation ein Gradient immer kleiner wird oder Null wird und kleine Gradienten beim Übergang von der Ausgabeschicht zur Eingabeschicht viele Male miteinander multipliziert werden, kann ein Modell nicht effektiv trainiert werden.
- Das geht einfacher, wenn mehr Schichten in einem Modell vorhanden sind.
- wird leicht durch die Sigmoid-Aktivierungsfunktion verursacht, die in PyTorch Sigmoid() ist, da sie kleine Werte erzeugt, deren Bereiche 0
- kommt vor in:
- CNN (Convolutional Neural Network).
- RNN (Recurrent Neural Network) das ist RNN() in PyTorch.
- tritt nicht leicht auf bei:
- LSTM (Long Short-Term Memory) das ist LSTM() in PyTorch.
- GRU (Gated Recurrent Unit) das ist GRU() in PyTorch.
- Resnet (Residual Neural Network) das ist Resnet in PyTorch.
- Transformer, das ist Transformer() in PyTorch.
- usw.
- kann erkannt werden, wenn:
- Parameter ändern sich erheblich auf den Ebenen in der Nähe der Ausgabeebene, während sich die Parameter auf den Ebenen in der Nähe der Eingabeebene geringfügig ändern oder unverändert bleiben.
- Die Gewichtungen der Ebenen in der Nähe der Eingabeebene liegen nahe bei 0 oder werden zu 0.
- Konvergenz ist langsam oder gestoppt.
- kann gemildert werden durch:
- Batch-Normalisierungsebene, die BatchNorm1d(), BatchNorm2d() oder BatchNorm3d() in PyTorch ist.
- Leaky ReLU-Aktivierungsfunktion, die LeakyReLU() in PyTorch ist. *Sie können auch die ReLU-Aktivierungsfunktion verwenden, die ReLU() in PyTorch ist, aber manchmal verursacht sie ein Sterbendes ReLU-Problem, das ich später erläutere.
- PReLU-Aktivierungsfunktion, die PReLU() in PyTorch ist.
- ELU-Aktivierungsfunktion, die ELU() in PyTorch ist.
- Verlaufsausschnitt, was in PyTorch „clip_grad_norm_()“ oder „clip_grad_value_()“ ist. *Verlaufsausschnitt ist die Methode, um einen Verlauf in einem bestimmten Bereich zu halten.
Problem mit explodierenden Farbverläufen:
- Während der Backpropagation wird ein Gradient immer größer, wobei größere Gradienten auf dem Weg von der Ausgabeebene zur Eingabeebene viele Male multipliziert werden und dann eine Konvergenz unmöglich wird.
- Das geht einfacher, wenn mehr Schichten in einem Modell vorhanden sind.
- kommt vor in:
- CNN.
- RNN.
- LSTM.
- GRU.
- tritt nicht leicht auf bei:
- Resnet.
- Transformator.
- usw.
- kann erkannt werden, wenn:
- Die Gewichte eines Modells erhöhen sich deutlich.
- Die Gewichte eines deutlich ansteigenden Modells werden schließlich NaN.
- Konvergenz schwankt, ohne fertig zu werden.
- kann gemildert werden durch:
- Batch-Normalisierungsebene.
- Verlaufsausschnitt.
Sterbendes ReLU-Problem:
- während der Backpropagation erzeugen die Knoten (Neuronen) mit der ReLU-Aktivierungsfunktion, sobald sie Null oder negative Eingabewerte erhalten, immer Null für alle Eingabewerte, und schließlich werden sie nie wiederhergestellt, um Werte außer zu erzeugen Null, dann kann ein Modell nicht effektiv trainiert werden.
- wird auch Dead ReLU-Problem genannt.
- tritt leichter auf bei:
- höhere Lernraten.
- höhere negative Tendenz.
- kann erkannt werden, wenn:
- Konvergenz ist langsam oder gestoppt.
- Eine Verlustfunktion gibt nan zurück.
- kann gemildert werden durch:
- geringere Lernrate.
- eine positive Tendenz.
- Undichte ReLU-Aktivierungsfunktion.
- PReLU-Aktivierungsfunktion.
- ELU-Aktivierungsfunktion.
Das obige ist der detaillierte Inhalt vonProblem des verschwindenden und explodierenden Gradienten und sterbendes ReLU-Problem. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Zu den realen Anwendungen von Python gehören Datenanalysen, Webentwicklung, künstliche Intelligenz und Automatisierung. 1) In der Datenanalyse verwendet Python Pandas und Matplotlib, um Daten zu verarbeiten und zu visualisieren. 2) In der Webentwicklung vereinfachen Django und Flask Frameworks die Erstellung von Webanwendungen. 3) Auf dem Gebiet der künstlichen Intelligenz werden Tensorflow und Pytorch verwendet, um Modelle zu bauen und zu trainieren. 4) In Bezug auf die Automatisierung können Python -Skripte für Aufgaben wie das Kopieren von Dateien verwendet werden.

Python wird häufig in den Bereichen Data Science, Web Development und Automation Scripting verwendet. 1) In der Datenwissenschaft vereinfacht Python die Datenverarbeitung und -analyse durch Bibliotheken wie Numpy und Pandas. 2) In der Webentwicklung ermöglichen die Django- und Flask -Frameworks Entwicklern, Anwendungen schnell zu erstellen. 3) In automatisierten Skripten machen Pythons Einfachheit und Standardbibliothek es ideal.

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung