


Die Herausforderungen beim Erstellen von Wörterbüchern leerer Listen verstehen
In Python kann das Erstellen eines Wörterbuchs leerer Listen aufgrund der gemeinsamen Referenz schwierig sein des Listenobjekts bei Verwendung von dict.fromkeys(). Beim Versuch, ein Element an einen Schlüssel anzuhängen, werden aufgrund der Referenz alle Schlüssel mit demselben Element aktualisiert.
Verhalten der Fromkeys-Methode
Wenn das zweite Argument für dict.fromkeys (), in diesem Fall eine leere Liste, übergeben wird, haben alle Werte im resultierenden Wörterbuch denselben Verweis auf das Listenobjekt. Jede an einem Schlüssel vorgenommene Änderung wirkt sich auf alle anderen Schlüssel aus.
Alternative Lösungen
Um dieses Problem zu vermeiden, gibt es alternative Lösungen:
- Diktverständnis (Python 2.7 und oben):
data = {k: [] for k in range(2)}
Dadurch wird ein Wörterbuch erstellt, in dem jeder Schlüssel seine eigene eindeutige, leere Liste hat.
- Listenverständnis mit Dict Constructor (Python-Versionen vor 2.7):
data = dict([(k, []) for k in range(2)])
Dadurch wird erreicht Gleiches Ergebnis wie das Diktatverständnis durch Konvertieren des Listenverständnisses in ein Wörterbuch.
- Generator-Ausdruck mit Dict Constructor (Python 2.4-2.6):
data = dict((k, []) for k in range(2))
In dieser Version wird ein Generatorausdruck unter Umgehung der Liste direkt an den Diktkonstruktor übergeben Verständnisschritt. Die den Ausdruck umgebenden Klammern können weggelassen werden.
Durch die Verwendung dieser alternativen Methoden können Wörterbücher mit leeren Listen korrekt erstellt werden, sodass die Manipulation einzelner Schlüssel möglich ist, ohne dass sich dies auf andere Schlüssel auswirkt.
Das obige ist der detaillierte Inhalt vonWie vermeide ich gemeinsame Referenzen beim Erstellen von Wörterbüchern mit leeren Listen in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Inpython, youAppendElementStoAlistusedtheAppend () Methode.1) UseAppend () ForsingleElelements: my_list.append (4) .2) usextend () oder = formulnElements: my_list.extend (andere_list) ormy_list = [4,5,6] .3) useInSert () FORSPECIFIFICISPositionen: my_list.insert (1,5) .Beaware

Zu den Methoden zum Debuggen des Shebang -Problems gehören: 1.. Überprüfen Sie die SHEBANG -Zeile, um sicherzustellen, dass es sich um die erste Zeile des Skripts handelt, und es gibt keine vorangestellten Räume. 2. Überprüfen Sie, ob der Dolmetscherpfad korrekt ist; 3. Rufen Sie den Dolmetscher direkt an, um das Skript auszuführen, um das Problem der Shebang zu isolieren. 4. Verwenden Sie Strace oder Trusts, um die Systemaufrufe zu verfolgen. 5. Überprüfen Sie die Auswirkungen von Umgebungsvariablen auf Shebang.

PythonlistscanbemanipuleduseveralmethodstoremoveElements: 1) theremove () methodremoveFirstoccurce -ofaspecifiedValue.2) thepop () methodremovesandreturnsanelementatagivedEx.3) theedelstatementcanremoveMeMeMeMeTex.

PythonlistscanstoreanyDatatype, einschließlich Integren, Streicher, Schwimmkörper, Booleans, anderen Listen und Dotionen. ThisverSatilityAllows-Formixed-Typen, die kanbemännische EffectivantivinyusingTypecks, TypenHints und spezialisierte LikenumpyForperformance

PythonlistsSupportnumousoperationen: 1) AddelementsWithAppend (), Extend (), andInsert (). 2) REMVERGENDEMODESUSUSUSSUMOVER (), POP () und Clear (). 3) Accessing undModifyingWithindexingandSlicing.4) SearchingandSortingWithindEx (), Sorte (), und Sortex ()

Durch die folgenden Schritte können mehrdimensionale Arrays mit Numpy erstellt werden: 1) Verwenden Sie die Funktion numpy.array (), um ein Array wie NP.Array ([1,2,3], [4,5,6]) zu erstellen, um ein 2D-Array zu erstellen; 2) Verwenden Sie np.zeros (), np.ones (), np.random.random () und andere Funktionen, um ein Array zu erstellen, das mit spezifischen Werten gefüllt ist; 3) Verstehen Sie die Form- und Größeneigenschaften des Arrays, um sicherzustellen, dass die Länge des Unterarrays konsistent ist und Fehler vermeiden. 4) Verwenden Sie die Funktion np.reshape (), um die Form des Arrays zu ändern. 5) Achten Sie auf die Speichernutzung, um sicherzustellen, dass der Code klar und effizient ist.

SendeminnumpyissamethodtoperformoperationsonarraysofdifferentShapesByAutomaticaligningTHem.itsimplifiesCode, Verbesserung der Verschiebbarkeit, und BoostSPerformance.her'Showitworks: 1) kleinereArraysArepaddedwithonestOMatchDimens.2) compatibledimens

Forpythondatastorage, ChooselistsforflexibilitätswithmixedDatatypes, Array.Arrayformemory-effizientesHomogenoususnumericalData und NumpyArraysForAdvancedNumericalComputing.ListsareversAntileffictionForLarGenicalDataSetsetaSets;


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.
