


Wie beschneide ich Bilder in OpenCV mit Python: Numpy Slicing vs. getRectSubPix?
So beschneiden Sie Bilder in OpenCV mit Python
Bei der Bildverarbeitung ist das Zuschneiden ein grundlegender Vorgang, um bestimmte Bereiche aus einem Bild zu extrahieren. OpenCV, eine beliebte Computer-Vision-Bibliothek in Python, bietet verschiedene Methoden zum Zuschneiden, einschließlich Numpy-Slicing und Funktionen wie getRectSubPix.
Numpy-Slicing zum Zuschneiden verwenden
Die einfachste und Der einfachste Ansatz zum Zuschneiden von Bildern in OpenCV ist die Verwendung von Numpy Slicing. Numpy-Arrays stellen Bilder in OpenCV dar, und Sie können mithilfe von Slicing-Vorgängen auf bestimmte Bereiche des Arrays zugreifen.
import cv2 # Read the original image img = cv2.imread("image.jpg") # Crop a region using numpy slicing cropped_img = img[y:y+h, x:x+w] # Display the cropped image cv2.imshow('Cropped Image', cropped_img) cv2.waitKey(0)
Verwenden von getRectSubPix zum Zuschneiden
In bestimmten Szenarien, z Wenn ein präzises Zuschneiden von Subpixeln erforderlich ist, kann die getRectSubPix-Funktion von OpenCV verwendet werden. Es extrahiert einen rechteckigen Teil des Bildes und interpoliert dabei die Pixelwerte.
import cv2 # Read the original image img = cv2.imread("image.jpg", cv2.IMREAD_GRAYSCALE) # Crop a region using getRectSubPix cropped_img = cv2.getRectSubPix(img, (w, h), (x, y)) # Display the cropped image cv2.imshow('Cropped Image', cropped_img) cv2.waitKey(0)
Beispielcode (PIL vs. OpenCV)
Um den Unterschied zwischen PIL und zu veranschaulichen OpenCV, erstellen wir ein Beispiel, das dem im bereitgestellten ähnelt Frage.
PIL:
import PIL.Image as Image im = Image.open('0.png').convert('L') im = im.crop((1, 1, 98, 33)) im.save('_0.png')
OpenCV:
import cv2 # Read the image img = cv2.imread('0.png', cv2.IMREAD_GRAYSCALE) # Crop the image using numpy slicing cropped_img = img[1:33, 1:98] # Save the cropped image cv2.imwrite('_0.png', cropped_img)
In diesem Beispiel verwendet OpenCV Numpy Slicing um das durch die Koordinaten (1, 1, 98, 33) angegebene Bild zuzuschneiden. Das resultierende zugeschnittene Bild wird als „_0.png“ gespeichert.
Das obige ist der detaillierte Inhalt vonWie beschneide ich Bilder in OpenCV mit Python: Numpy Slicing vs. getRectSubPix?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Durch die folgenden Schritte können mehrdimensionale Arrays mit Numpy erstellt werden: 1) Verwenden Sie die Funktion numpy.array (), um ein Array wie NP.Array ([1,2,3], [4,5,6]) zu erstellen, um ein 2D-Array zu erstellen; 2) Verwenden Sie np.zeros (), np.ones (), np.random.random () und andere Funktionen, um ein Array zu erstellen, das mit spezifischen Werten gefüllt ist; 3) Verstehen Sie die Form- und Größeneigenschaften des Arrays, um sicherzustellen, dass die Länge des Unterarrays konsistent ist und Fehler vermeiden. 4) Verwenden Sie die Funktion np.reshape (), um die Form des Arrays zu ändern. 5) Achten Sie auf die Speichernutzung, um sicherzustellen, dass der Code klar und effizient ist.

SendeminnumpyissamethodtoperformoperationsonarraysofdifferentShapesByAutomaticaligningTHem.itsimplifiesCode, Verbesserung der Verschiebbarkeit, und BoostSPerformance.her'Showitworks: 1) kleinereArraysArepaddedwithonestOMatchDimens.2) compatibledimens

Forpythondatastorage, ChooselistsforflexibilitätswithmixedDatatypes, Array.Arrayformemory-effizientesHomogenoususnumericalData und NumpyArraysForAdvancedNumericalComputing.ListsareversAntileffictionForLarGenicalDataSetsetaSets;

PythonlistsarebetterTterThanarraysFormAnagingDiversedatatypes.1) ListScanholdElements ofdifferenttypes, 2) siearedynamic, erlauben EasyDitionSsandremovals, 3) sie antelluitive Operationenslikesklikationen, Buth), sie ohne Ereignis-effosidentandslowentlaunenfeuer.

ToaccesselementSinapythonarray, useIndexing: my_array [2] AccessaThThirtelement, returning3.pythonuseszero-basiertindexing.1) usepositiveAndnegativeIndexing: my_list [0] fORGHEFIRSTELEMENT, MY_LIST [-1] Forthelast.2) VerwendungsforArange: my_list [1: 5] extractsselemen

In Artikel wird die Unmöglichkeit des Tupelverständnisses in Python aufgrund von Syntax -Mehrdeutigkeiten erörtert. Alternativen wie die Verwendung von Tuple () mit Generatorausdrücken werden vorgeschlagen, um Tupel effizient zu erstellen (159 Zeichen)

Der Artikel erläutert Module und Pakete in Python, deren Unterschiede und Verwendung. Module sind einzelne Dateien, während Pakete Verzeichnisse mit einer __init__.py -Datei sind, die verwandte Module hierarchisch organisieren.

In Artikel werden Docstrings in Python, deren Nutzung und Vorteile erörtert. Hauptproblem: Bedeutung von DocStrings für die Code -Dokumentation und -zugriffsfunktion.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor
