


Parametriertes Unit-Testen in Python: Ein Leitfaden zur dynamischen Testgenerierung
In der Softwareentwicklung spielt das Testen eine entscheidende Rolle bei der Gewährleistung der Zuverlässigkeit und Genauigkeit unseres Codes. Insbesondere beim Unit-Testing geht es darum, einzelne Tests für bestimmte Funktionen oder Module zu erstellen. Wenn es jedoch um große Datensätze oder komplexe Testszenarien geht, wird es mühsam, Tests für jeden Parameter manuell zu schreiben.
Parameterisiertes Testen: Eine Lösung für die dynamische Testgenerierung
Parametrisierte Tests, auch als parametrisierte Unit-Tests bekannt, begegnen dieser Herausforderung, indem sie den Prozess der Testgenerierung basierend auf Eingabeparametern automatisieren. Es ermöglicht uns, einen einzelnen Test über mehrere Datensätze hinweg auszuführen, wobei die Testparameter zur Laufzeit dynamisch ersetzt werden.
Tools und Techniken zur Parametrisierung
Python bietet eine Reihe von Möglichkeiten von Werkzeugen und Bibliotheken zur Parametrisierung. Dazu gehören:
1. pytests Decorator:
pytest bietet einen praktischen Decorator @pytest.mark.parametrize, der die Parametrisierung vereinfacht. Es ermöglicht uns, eine Liste von Tupeln zu übergeben, die Testparameter enthalten, und der Dekorateur erweitert den Test für jeden Wertesatz.
Beispiel:
import pytest @pytest.mark.parametrize("name, a, b", [ ("foo", "a", "a"), ("bar", "a", "b"), ("lee", "b", "b"), ]) def test_sequence(name, a, b): assert a == b
2. parametrisierte Bibliothek:
Die parametrisierte Bibliothek bietet einen alternativen Ansatz zur Parametrisierung. Es ermöglicht uns, einen Dekorator @parameterized.expand zu verwenden, um Testparameter als Listen oder Generatoren anzugeben.
Beispiel:
from parameterized import parameterized class TestSequence(unittest.TestCase): @parameterized.expand([ ("foo", "a", "a"), ("bar", "a", "b"), ("lee", "b", "b"), ]) def test_sequence(self, name, a, b): self.assertEqual(a, b)
Vorteile des parametrisierten Testens:
- Reduzierter Testaufwand: Eliminiert die Sie müssen für jede Parameterkombination separate Tests schreiben, was Zeit und Aufwand spart.
- Verbesserte Testabdeckung: Durch das Testen aller möglichen Parameterwerte wird eine umfassende Testabdeckung gewährleistet und das Risiko fehlender Kanten verringert Fälle.
- Datengesteuertes Testen: Erleichtert das Testen komplexer Szenarien, bei denen die Daten selbst das Testen steuern Verhalten.
- Effizient und skalierbar:Der automatisierte Testgenerierungsprozess macht das Testen effizienter und skalierbarer, insbesondere für große Datensätze.
Legacy-Ansatz:
Für den historischen Kontext können wir einen älteren Ansatz erwähnen, bei dem die dynamische Klassenerstellung zum Generieren verwendet wird Tests:
Beispiel:
import unittest l = [["foo", "a", "a",], ["bar", "a", "b"], ["lee", "b", "b"]] class TestSequense(unittest.TestCase): pass def test_generator(a, b): def test(self): self.assertEqual(a,b) return test if __name__ == '__main__': for t in l: test_name = 'test_%s' % t[0] test = test_generator(t[1], t[2]) setattr(TestSequense, test_name, test) unittest.main()
Dieser Legacy-Ansatz ist in der modernen Python-Entwicklung aufgrund der Verfügbarkeit effizienterer und benutzerfreundlicherer Parametrisierungstools weniger verbreitet.
Das obige ist der detaillierte Inhalt vonWie können parametrisierte Unit-Tests die Python-Testgenerierung optimieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Python bietet eine Vielzahl von Möglichkeiten zum Herunterladen von Dateien aus dem Internet, die über HTTP über das Urllib -Paket oder die Anforderungsbibliothek heruntergeladen werden können. In diesem Tutorial wird erläutert, wie Sie diese Bibliotheken verwenden, um Dateien von URLs von Python herunterzuladen. Anfragen Bibliothek Anfragen ist eine der beliebtesten Bibliotheken in Python. Es ermöglicht das Senden von HTTP/1.1 -Anfragen, ohne die URLs oder die Formulierung von Postdaten manuell hinzuzufügen. Die Anforderungsbibliothek kann viele Funktionen ausführen, einschließlich: Formulardaten hinzufügen Fügen Sie mehrteilige Datei hinzu Greifen Sie auf Python -Antwortdaten zu Eine Anfrage stellen Kopf

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Die natürliche Sprachverarbeitung (NLP) ist die automatische oder semi-automatische Verarbeitung der menschlichen Sprache. NLP ist eng mit der Linguistik verwandt und hat Verbindungen zur Forschung in kognitiven Wissenschaft, Psychologie, Physiologie und Mathematik. In der Informatik

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Dreamweaver CS6
Visuelle Webentwicklungstools

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor
