


Wie konvertiert man eine Pyspark-String-Spalte effizient in eine Datumsspalte?
Pyspark-String-Spalte in Datumsformat konvertieren
Bei der Arbeit mit Pyspark kann es erforderlich sein, eine String-Spalte, die Datumsangaben darstellt, in eine DateType-Spalte zu konvertieren. Dies tritt häufig auf, wenn die Daten als Zeichenfolgen erfasst werden.
Um dies zu veranschaulichen, betrachten Sie den folgenden DataFrame mit einer Zeichenfolgenspalte namens STRING_COLUMN im Format MM-TT-JJJJ:
df = spark.createDataFrame([ ("01-01-2023",), ("01-02-2023",), ("01-03-2023",), ], ["STRING_COLUMN"]) df.show()
Um STRING_COLUMN in eine DateType-Spalte umzuwandeln, besteht eine Methode darin, die Funktion to_date() zu verwenden, wie im Original vorgeschlagen Versuch:
df.select(to_date(df.STRING_COLUMN).alias("new_date")).show()
Dieser Ansatz kann jedoch dazu führen, dass eine Spalte mit Nullen gefüllt wird. Um dieses Problem zu beheben, sollten Sie eine der folgenden Methoden in Betracht ziehen:
1. to_timestamp-Funktion (Spark 2.2):
Ab Spark 2.2 bietet die to_timestamp()-Funktion eine effizientere und einfachere Möglichkeit, Zeichenfolgen in Zeitstempel zu konvertieren. Es unterstützt die Angabe des Eingabeformats mithilfe des Formatarguments:
df.select(to_timestamp(df.STRING_COLUMN, "MM-dd-yyyy").alias("new_date")).show()
2. unix_timestamp- und from_unixtime-Funktionen (Spark
Für Spark-Versionen vor 2.2 kann eine Kombination aus unix_timestamp- und from_unixtime-Funktionen verwendet werden:
from pyspark.sql.functions import unix_timestamp, from_unixtime df.select( from_unixtime(unix_timestamp(df.STRING_COLUMN, "MM-dd-yyyy")).alias("new_date") ).show()
In beiden Fällen , kann die Methode show() verwendet werden, um die konvertierte DateType-Spalte anzuzeigen.
Das obige ist der detaillierte Inhalt vonWie konvertiert man eine Pyspark-String-Spalte effizient in eine Datumsspalte?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.

PythonexexecutionStheProcessOfTransformingPythonCodeIntoexexexecleableInstructions.1) ThePythonvirtualmachine (PVM) Ausführungen

Zu den wichtigsten Merkmalen von Python gehören: 1. Die Syntax ist prägnant und leicht zu verstehen, für Anfänger geeignet; 2. Dynamisches Typsystem, Verbesserung der Entwicklungsgeschwindigkeit; 3. Reiche Standardbibliothek, Unterstützung mehrerer Aufgaben; 4. Starke Gemeinschaft und Ökosystem, die umfassende Unterstützung leisten; 5. Interpretation, geeignet für Skript- und Schnellprototypen; 6. Support für Multi-Paradigma, geeignet für verschiedene Programmierstile.

Python ist eine interpretierte Sprache, enthält aber auch den Zusammenstellungsprozess. 1) Python -Code wird zuerst in Bytecode zusammengestellt. 2) Bytecode wird von Python Virtual Machine interpretiert und ausgeführt. 3) Dieser Hybridmechanismus macht Python sowohl flexibel als auch effizient, aber nicht so schnell wie eine vollständig kompilierte Sprache.

UseaforloopwheniteratoverasequenceOrforaPecificNumberoftimes; UseaWhileloopWencontiningUntilAconDitionisMet.ForloopsardealForknown -Sequencies, während whileloopSuituationen mithungeterminediterationen.

PythonloopscanleadtoErors-ähnliche Finanzeloops, ModificingListsDuringiteration, Off-by-Oneerrors, Zero-Indexingissues und Nestroxinefficiens.toavoidthese: 1) Verwenden Sie


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.
