


Letzte N Zeilen einer Datei abrufen und „Ende“ simulieren
Einführung:
Bei der Analyse großer Protokolldateien Oft ist es erforderlich, die letzten N Zeilen zur Paginierung oder Überprüfung abzurufen. Dies wirft die Frage auf, wie man eine Protokolldatei effizient mit einem Offset versehen kann.
Kandidatenlösung 1:
def tail(f, n, offset=0): avg_line_length = 74 to_read = n + offset while 1: try: f.seek(-(avg_line_length * to_read), 2) except IOError: f.seek(0) pos = f.tell() lines = f.read().splitlines() if len(lines) >= to_read or pos == 0: return lines[-to_read:offset and -offset or None] avg_line_length *= 1.3
Bewertung:
Dies Der Ansatz geht von Annahmen über die durchschnittliche Zeilenlänge aus und sucht schrittweise rückwärts, bis er genügend Zeilen findet. Aufgrund der anfänglichen Schätzung muss möglicherweise mehrmals gesucht werden, was möglicherweise zu Leistungseinbußen führt.
Kandidatenlösung 2:
def tail(f, lines=20): BLOCK_SIZE = 1024 f.seek(0, 2) block_end_byte = f.tell() lines_to_go = lines block_number = -1 blocks = [] while lines_to_go > 0 and block_end_byte > 0: if (block_end_byte - BLOCK_SIZE > 0): f.seek(block_number * BLOCK_SIZE, 2) blocks.append(f.read(BLOCK_SIZE)) else: f.seek(0, 0) blocks.append(f.read(block_end_byte)) lines_found = blocks[-1].count('\n') lines_to_go -= lines_found block_end_byte -= BLOCK_SIZE block_number -= 1 all_read_text = ''.join(reversed(blocks)) return '\n'.join(all_read_text.splitlines()[-lines:])
Erklärung:
Diese Methode geht Block für Block durch die Datei zurück, bis sie die gewünschte Anzahl von Zeilenumbrüchen findet. Es werden keine Annahmen über die Zeilenlänge getroffen und von Anfang an gelesen, wenn die Datei zu klein ist, um sie zurückzuverfolgen.
Vergleich:
Kandidatenlösung 2 ist im Allgemeinen effizienter und robuster als Kandidatenlösung 1 , da es nicht auf Schätzungen beruht und die Datei nacheinander liest. Dies ist ein zuverlässigerer Ansatz für das Tailing von Protokolldateien mit Offsets.
Das obige ist der detaillierte Inhalt vonWie kann ich die letzten N Zeilen einer großen Datei effizient abrufen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python ist eine interpretierte Sprache, enthält aber auch den Zusammenstellungsprozess. 1) Python -Code wird zuerst in Bytecode zusammengestellt. 2) Bytecode wird von Python Virtual Machine interpretiert und ausgeführt. 3) Dieser Hybridmechanismus macht Python sowohl flexibel als auch effizient, aber nicht so schnell wie eine vollständig kompilierte Sprache.

UseaforloopwheniteratoverasequenceOrforaPecificNumberoftimes; UseaWhileloopWencontiningUntilAconDitionisMet.ForloopsardealForknown -Sequencies, während whileloopSuituationen mithungeterminediterationen.

PythonloopscanleadtoErors-ähnliche Finanzeloops, ModificingListsDuringiteration, Off-by-Oneerrors, Zero-Indexingissues und Nestroxinefficiens.toavoidthese: 1) Verwenden Sie

ForloopSareadVantageousForknowniterations und Sequences, OfferingImplicity und Readability;

PythonusesahybridmodelofCompilation und Interpretation: 1) thepythonInterPreterCompilessourceCodeIntoplatform-unintenpendentBytecode.2) Thepythonvirtualmachine (PVM) ThenexexexexecthisByTeCode, BalancingeAnsewusewithperformance.

Pythonisbothinterpreted und kompiliert.1) ItscompiledToByteCodeForPortabilityAcrossplatform.2) thytecodeTheninterpreted, und das ErlaubnisfordyNamictyPingandRapidDevelopment zulässt, obwohl es sich

ForloopsaridealWenyouKnowtHenumberofofiterationssinadvance, während whileloopsarebetterForsituationswhereyouneedtoloopuntilaconditionismet.forloopsaremoreffictionAndable, geeigneter Verfaserungsverlust, whereaswiloopsofofermorcontrolanduseusefulfulf

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

Dreamweaver CS6
Visuelle Webentwicklungstools

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

Dreamweaver Mac
Visuelle Webentwicklungstools
