So rufen Sie GET-Anforderungswerte in Django ab
In Django kann das Extrahieren von GET-Anforderungswerten aus dem HttpRequest-Objekt ohne die Verwendung von durchgeführt werden extern Bibliotheken.
Problem:
Der Zugriff auf GET-Parameter über die URL mithilfe der HttpRequest.GET-Eigenschaft führt zu einem leeren QueryDict-Objekt.
Lösung:
Um GET-Anforderungswerte direkt von HttpRequest abzurufen, verwenden Sie Folgendes Syntax:
request.GET.get('parameter_name', 'default_value')
- Ersetzen Sie „parameter_name“ durch den gewünschten GET-Parameter.
- „default_value“ ist optional und gibt den Wert an, der zurückgegeben werden soll, wenn der Parameter nicht gefunden wird.
Beispiel:
Um die abzurufen Parameter „q“ aus der URL „domain/search/?q=haha“:
q_value = request.GET.get('q', 'default')
Die Variable „q_value“ enthält jetzt den Wert „haha“.
Hinweis zur URL-Konfiguration:
Wenn GET-Parameter mithilfe regulärer Ausdrücke in der URLconf erfasst werden, werden sie als Argumente oder benannt an die zugehörige Ansichtsfunktion übergeben Argumente. Die Erfassung regulärer Ausdrücke ist innerhalb dieser Funktionen verfügbar.
Betrachten Sie beispielsweise die folgende URL-Konfiguration:
(r'^user/(?P<username>\w{0,50})/$', views.profile_page),</username>
In „views.py“ würde die Funktion „profile_page view“ wie folgt aussehen:
def profile_page(request, username): # View logic goes here
In diesem Fall wird der GET-Parameter „Benutzername“ als Argument „Benutzername“ an die Funktion „profile_page“ übergeben.
Das obige ist der detaillierte Inhalt vonWie greife ich in Django auf GET-Anfrageparameter zu?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Durch die folgenden Schritte können mehrdimensionale Arrays mit Numpy erstellt werden: 1) Verwenden Sie die Funktion numpy.array (), um ein Array wie NP.Array ([1,2,3], [4,5,6]) zu erstellen, um ein 2D-Array zu erstellen; 2) Verwenden Sie np.zeros (), np.ones (), np.random.random () und andere Funktionen, um ein Array zu erstellen, das mit spezifischen Werten gefüllt ist; 3) Verstehen Sie die Form- und Größeneigenschaften des Arrays, um sicherzustellen, dass die Länge des Unterarrays konsistent ist und Fehler vermeiden. 4) Verwenden Sie die Funktion np.reshape (), um die Form des Arrays zu ändern. 5) Achten Sie auf die Speichernutzung, um sicherzustellen, dass der Code klar und effizient ist.

SendeminnumpyissamethodtoperformoperationsonarraysofdifferentShapesByAutomaticaligningTHem.itsimplifiesCode, Verbesserung der Verschiebbarkeit, und BoostSPerformance.her'Showitworks: 1) kleinereArraysArepaddedwithonestOMatchDimens.2) compatibledimens

Forpythondatastorage, ChooselistsforflexibilitätswithmixedDatatypes, Array.Arrayformemory-effizientesHomogenoususnumericalData und NumpyArraysForAdvancedNumericalComputing.ListsareversAntileffictionForLarGenicalDataSetsetaSets;

PythonlistsarebetterTterThanarraysFormAnagingDiversedatatypes.1) ListScanholdElements ofdifferenttypes, 2) siearedynamic, erlauben EasyDitionSsandremovals, 3) sie antelluitive Operationenslikesklikationen, Buth), sie ohne Ereignis-effosidentandslowentlaunenfeuer.

ToaccesselementSinapythonarray, useIndexing: my_array [2] AccessaThThirtelement, returning3.pythonuseszero-basiertindexing.1) usepositiveAndnegativeIndexing: my_list [0] fORGHEFIRSTELEMENT, MY_LIST [-1] Forthelast.2) VerwendungsforArange: my_list [1: 5] extractsselemen

In Artikel wird die Unmöglichkeit des Tupelverständnisses in Python aufgrund von Syntax -Mehrdeutigkeiten erörtert. Alternativen wie die Verwendung von Tuple () mit Generatorausdrücken werden vorgeschlagen, um Tupel effizient zu erstellen (159 Zeichen)

Der Artikel erläutert Module und Pakete in Python, deren Unterschiede und Verwendung. Module sind einzelne Dateien, während Pakete Verzeichnisse mit einer __init__.py -Datei sind, die verwandte Module hierarchisch organisieren.

In Artikel werden Docstrings in Python, deren Nutzung und Vorteile erörtert. Hauptproblem: Bedeutung von DocStrings für die Code -Dokumentation und -zugriffsfunktion.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool
