suchen
HeimBackend-EntwicklungPython-TutorialDies sind die besten Programmiersprachen für die KI-Entwicklung.

These Are the Best Programming Languages for AI Development.

Künstliche Intelligenz (KI) hat sich schnell von einem futuristischen Konzept zu einer heutigen Realität entwickelt, die Branchen und Karrierewege verändert. Von der Stromversorgung von Chatbots und Empfehlungssystemen bis hin zur Ermöglichung autonomer Fahrzeuge und prädiktiver Analysen ist KI zum Rückgrat technologischer Innovationen geworden. Für diejenigen, die eine Karriere in der KI beginnen möchten, ist das Verständnis der Programmiersprachen, die die KI-Entwicklung vorantreiben, von entscheidender Bedeutung.

Aber bevor wir in die Liste der Sprachen eintauchen, ist es erwähnenswert, dass der Aufbau einer Karriere in der KI mehr erfordert als nur die Beherrschung des Programmierens. Dazu gehört ein Verständnis von maschinellem Lernen (ML), Datenwissenschaft und domänenspezifischen Anwendungen. Ein umfassender Leitfaden wie die AI Engineer Roadmap von roadmap.sh kann bei der Strukturierung Ihres Lernpfads von unschätzbarem Wert sein.

Konzentrieren wir uns nun auf die Kernwerkzeuge – Programmiersprachen. Hier sind die besten Sprachen für die KI-Entwicklung und warum sie wichtig sind:

1. Python:

Python bleibt aus mehreren Gründen die beliebteste Sprache in der KI-Entwicklung. Seine Einfachheit und Lesbarkeit machen es zu einer ausgezeichneten Wahl für Anfänger, während seine umfangreichen Bibliotheken – wie TensorFlow, PyTorch, Scikit-learn und Keras – für fortgeschrittene KI-Anwendungen geeignet sind. Die Vielseitigkeit von Python bedeutet auch, dass Sie nahtlos an der Datenvorverarbeitung, Modellbildung und Bereitstellung in einem einzigen Ökosystem arbeiten können.

Wo Python glänzt:

  • Maschinelles Lernen und Deep Learning
  • Natürliche Sprachverarbeitung (NLP)
  • Computer Vision
  • Robotik

Warum Python?

Seine unterstützende Community und umfangreiche Ressourcen erleichtern die Fehlerbehebung und Innovation erheblich.

2. R: Der Data Science-Spezialist

Für diejenigen mit einem starken Fokus auf Statistik, Datenanalyse und Visualisierung ist R eine bevorzugte Sprache. Seine umfassenden Pakete wie Caret, RandomForest und ggplot2 eignen sich perfekt zum Trainieren und Visualisieren von Modellen für maschinelles Lernen.

Wo R sich auszeichnet:

  • Statistische Analyse
  • Prädiktive Modellierung
  • Datenvisualisierung

Obwohl es bei der Bereitstellung nicht so vielseitig ist wie Python, bleibt R ein leistungsstarker Verbündeter für Prototyping und Forschung im Bereich KI.

3. Java: Die Unternehmens-KI

Java ist seit Jahrzehnten ein fester Bestandteil von Unternehmensanwendungen. Seine Stabilität, Skalierbarkeit und Portabilität machen es zu einer zuverlässigen Wahl für groß angelegte KI-Lösungen. Tools wie Weka, Deeplearning4j und MOA ermöglichen Java-Entwicklern den Einstieg in KI- und maschinelle Lernprojekte.

Wo Java effektiv ist:

  • KI-Lösungen für Unternehmen
  • Big-Data-Integration
  • Cloudbasierte KI-Systeme

Wenn Sie bereits mit Java vertraut sind, kann die Nutzung für die KI-Entwicklung die Lernkurve verkürzen.

4. Julia:

Julia entwickelt sich zu einer starken Kandidatin in der KI-Entwicklung, insbesondere für Aufgaben, die umfangreiche numerische Berechnungen erfordern. Es bietet die Geschwindigkeit von C und behält gleichzeitig die Benutzerfreundlichkeit von Python bei, was es ideal für leistungsstarke KI-Systeme macht.

Wo Julia hinpasst:

  • Wissenschaftliches Rechnen
  • Hochleistungsfähiges maschinelles Lernen
  • Groß angelegte Simulationen

Obwohl sein Ökosystem im Vergleich zu Python oder R immer noch wächst, sieht Julias Zukunft in der KI vielversprechend aus.

5. C:

Für Anwendungen, die eine differenzierte Kontrolle der Leistung erfordern, wie etwa Robotik und Spiele-KI, ist C beispiellos. Seine Low-Level-Speicherverwaltungsfunktionen machen es ideal für Echtzeit-KI-Lösungen.

Wohin C führt:

  • Robotik
  • Spieleentwicklung
  • Hochleistungs-KI-Anwendungen

Allerdings erfordert C eine steile Lernkurve und ist möglicherweise nicht für Anfänger geeignet.

6. JavaScript: KI im Browser

Mit dem Aufkommen von TensorFlow.js und Brain.js hat JavaScript Einzug in die KI-Arena gehalten und ermöglicht es Entwicklern, KI-Anwendungen zu erstellen, die direkt in Webbrowsern ausgeführt werden.

Wo JavaScript gedeiht:

  • Front-End-KI-Anwendungen
  • Interaktive Datenvisualisierungen
  • Prototyping von KI-Konzepten

Dies ist besonders nützlich für Entwickler, die KI-Funktionen in Webanwendungen integrieren möchten.

7. MATLAB: Das Werkzeug des Forschers

MATLAB wird in der Wissenschaft und Forschung häufig für KI-Projekte verwendet, die Bildverarbeitung, Signalverarbeitung und neuronale Netze umfassen. Seine integrierte Toolbox vereinfacht viele KI-Workflows, aber aufgrund seiner proprietären Natur ist es in Open-Source-Communitys weniger beliebt.

Wie wählt man die richtige Sprache?

Die beste Programmiersprache für die KI-Entwicklung hängt von Ihren Zielen und der spezifischen Anwendung ab, die Sie im Sinn haben:

  • Für Anfänger: Beginnen Sie mit Python – es ist leicht zu erlernen und vielseitig anwendbar.
  • Für datenorientierte Projekte: Ziehen Sie R wegen seiner statistischen Leistungsfähigkeit in Betracht.
  • Für leistungskritische Anwendungen: Entscheiden Sie sich für Julia oder C.
  • Für webbasierte KI: JavaScript ist möglicherweise die beste Wahl.
  • Für Lösungen auf Unternehmensebene: Die Skalierbarkeit von Java ist unübertroffen.

Nächste Schritte

Der Beginn einer Karriere in der KI-Technik/-Entwicklung erfordert mehr als nur die Beherrschung einer Programmiersprache. Hier sind einige zusätzliche Tipps:

  • Lernen Sie die Grundlagen des maschinellen Lernens: Verstehen Sie Algorithmen, Datenvorverarbeitung und Modellbewertung.
  • Machen Sie sich mit Daten vertraut: Datenverarbeitung, -bereinigung und -visualisierung sind grundlegende Fähigkeiten.
  • Experimentieren Sie mit KI-Frameworks: Bibliotheken wie TensorFlow, PyTorch und Scikit-learn sind ein Muss.
  • Zusammenarbeiten und innovieren: Treten Sie KI-Communitys bei, tragen Sie zu Open-Source-Projekten bei und bleiben Sie über Branchentrends auf dem Laufenden.

Das obige ist der detaillierte Inhalt vonDies sind die besten Programmiersprachen für die KI-Entwicklung.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal?Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal?Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Mar 10, 2025 pm 06:54 PM

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python -Objekten: Teil 1Serialisierung und Deserialisierung von Python -Objekten: Teil 1Mar 08, 2025 am 09:39 AM

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Mar 10, 2025 pm 06:52 PM

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Mathematische Module in Python: StatistikMathematische Module in Python: StatistikMar 09, 2025 am 11:40 AM

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Schaberwebseiten in Python mit wunderschöner Suppe: Suche und DOM -ModifikationSchaberwebseiten in Python mit wunderschöner Suppe: Suche und DOM -ModifikationMar 08, 2025 am 10:36 AM

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

Was sind einige beliebte Python -Bibliotheken und ihre Verwendung?Was sind einige beliebte Python -Bibliotheken und ihre Verwendung?Mar 21, 2025 pm 06:46 PM

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Wie erstelle ich Befehlszeilenschnittstellen (CLIS) mit Python?Wie erstelle ich Befehlszeilenschnittstellen (CLIS) mit Python?Mar 10, 2025 pm 06:48 PM

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),