


Wie kann ich mit Scipy in Python empirische Daten an theoretische Verteilungen anpassen?
Anpassen der empirischen Verteilung an theoretische mit Scipy
Einführung
Sie haben eine Ein großer Datensatz ganzzahliger Werte und das Ziel, p-Werte zu berechnen, erhöhen die Wahrscheinlichkeit, auf sie zu stoßen Werte. Um diese Wahrscheinlichkeiten zu bestimmen, suchen Sie nach einer theoretischen Verteilung, die Ihrer Datenverteilung nahe kommt. In diesem Artikel wird untersucht, wie Sie dies mit dem Scipy-Paket von Python erreichen können.
Fitting Distributions
Das scipy.stats-Modul von Scipy bietet eine umfangreiche Sammlung kontinuierlicher und diskreter Wahrscheinlichkeitsverteilungen. Jede Verteilung hat ihre eigenen Parameter, die ihre Form und ihr Verhalten charakterisieren. Das Ziel besteht darin, anhand eines Anpassungstests die Verteilung zu finden, die am besten zu Ihren empirischen Daten passt.
Anpassungstests
Anpassungstests messen die Diskrepanz zwischen einer empirischen Verteilung und einer theoretischen Verteilung. Zu den gängigen Tests gehören der Kolmogorov-Smirnov-Test und der Chi-Quadrat-Test. Scipy bietet Funktionen zur Durchführung dieser Tests, mit denen Sie die Fitness von Kandidatenverteilungen bewerten können.
Sum of Squared Error (SSE)
One Der Ansatz besteht darin, die Summe der quadratischen Fehler (SSE) als Maß für die Anpassungsgüte zu verwenden. SSE berechnet die quadrierte Differenz zwischen der empirischen und der theoretischen Wahrscheinlichkeitsdichtefunktion. Die Verteilung mit dem minimalen SSE gilt als die beste Anpassung.
Python-Implementierung
Der folgende Python-Code zeigt, wie Sie Ihre Daten an theoretische Verteilungen anpassen mit SSE:
<br>Pandas importieren als pd<br>numpy als np importieren<br>scipy.stats als st importieren<br>matplotlib.pyplot als plt importieren<p>data = pd.read_csv('data.csv') # Durch Ihre Datendatei ersetzen </p><h1 id="Histogramm-der-data">Histogramm der data</h1><p>plt.hist(data, bins=50)<br>plt.show()</p><h1 id="Kandidatenverteilungen">Kandidatenverteilungen</h1><p>dist_names = ['norm', 'expon', 'gamma', 'beta']</p><h1 id="Passen-Sie-jede-Verteilung-an-und-berechnen-Sie-SSE">Passen Sie jede Verteilung an und berechnen Sie SSE</h1><p>best_distribution = None<br>min_sse = np.inf<br>für dist in dist_names:</p><pre class="brush:php;toolbar:false">dist = getattr(st, dist) params = dist.fit(data) # Calculate SSE sse = np.mean((dist.pdf(data, *params) - np.histogram(data, bins=50, density=True)[0]) ** 2) # Update the best distribution if necessary if sse <h1 id="Drucken-Sie-die-Verteilungsparameter-für-die-beste-Anpassung">Drucken Sie die Verteilungsparameter für die beste Anpassung</h1><p>drucken (beste_verteilung[0].name, best_distribution[1])<br></p>
Dieser Code liefert den Namen der am besten passenden Verteilung zusammen mit ihren geschätzten Parametern. Mit diesen Parametern können Sie p-Werte berechnen und die Anpassungsgüte der Verteilung bewerten.
Das obige ist der detaillierte Inhalt vonWie kann ich mit Scipy in Python empirische Daten an theoretische Verteilungen anpassen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und C haben signifikante Unterschiede in der Speicherverwaltung und -kontrolle. 1. Python verwendet die automatische Speicherverwaltung, basierend auf der Referenzzählung und der Müllsammlung, um die Arbeit von Programmierern zu vereinfachen. 2.C erfordert eine manuelle Speicherverwaltung und liefert mehr Kontrolle, aber die Komplexität und das Fehlerrisiko. Welche Sprache zu wählen sollte, sollte auf Projektanforderungen und Teamtechnologie -Stack basieren.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Ob die Auswahl von Python oder C von den Projektanforderungen abhängt: 1) Python eignet sich aufgrund seiner prägnanten Syntax und reichhaltigen Bibliotheken für schnelle Entwicklung, Datenwissenschaft und Skripten; 2) C ist für Szenarien geeignet, die aufgrund seiner Zusammenstellung und des manuellen Speichermanagements eine hohe Leistung und die zugrunde liegende Kontrolle erfordern, wie z. B. Systemprogrammierung und Spielentwicklung.

Python wird in Datenwissenschaft und maschinellem Lernen häufig verwendet, wobei hauptsächlich auf seine Einfachheit und ein leistungsstarkes Bibliotheksökosystem beruhen. 1) Pandas wird zur Datenverarbeitung und -analyse verwendet, 2) Numpy liefert effiziente numerische Berechnungen, und 3) Scikit-Learn wird für die Konstruktion und Optimierung des maschinellen Lernens verwendet. Diese Bibliotheken machen Python zu einem idealen Werkzeug für Datenwissenschaft und maschinelles Lernen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Dreamweaver CS6
Visuelle Webentwicklungstools

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung