suchen
HeimBackend-EntwicklungPython-TutorialStellen Sie Hugging Face-Modelle in Schritten für AWS Lambda bereit

Wollten Sie schon immer ein Hugging Face-Modell in AWS Lambda bereitstellen, sind aber mit Container-Builds, Kaltstarts und Modell-Caching nicht weitergekommen? So geht's mit Scaffoldly in weniger als 5 Minuten.

TL;DR

  1. Erstellen Sie in AWS ein EFS-Dateisystem mit dem Namen .cache:

    • Gehen Sie zur AWS EFS-Konsole
    • Klicken Sie auf „Dateisystem erstellen“
    • Nennen Sie es .cache
    • Wählen Sie eine beliebige VPC aus (Scaffoldly kümmert sich um den Rest!)
  2. Erstellen Sie Ihre App aus dem Zweig „python-huggingface“:

     npx scaffoldly create app --template python-huggingface
    
  3. Stellen Sie es bereit:

     cd my-app && npx scaffoldly deploy
    

Das ist es! Sie erhalten ein Hugging Face-Modell, das auf Lambda läuft (am Beispiel von openai-community/gpt2), komplett mit ordnungsgemäßem Caching und Container-Bereitstellung.

Profi-Tipp: Für noch mehr Kosteneinsparungen können Sie das EFS-Setup auf eine einzelne AZ im Burstable-Modus anpassen. Scaffoldly ordnet die Lambda-Funktion der VPC, den Subnetzen und der Sicherheitsgruppe des EFS zu.

✨ Schauen Sie sich die Live-Demo und den Beispielcode an!

Das Problem

Die Bereitstellung von ML-Modellen für AWS Lambda umfasst traditionell Folgendes:

  • Docker-Container erstellen und verwalten
  • Modell-Caching und -Speicherung herausfinden
  • Umgang mit den Größenbeschränkungen von Lambda
  • Kaltstarts bewältigen
  • API-Endpunkte einrichten

Es ist eine Menge Infrastrukturarbeit, wenn man nur einem Model dienen möchte!

Die Lösung

Scaffoldly bewältigt all diese Komplexität mit einer einfachen Konfigurationsdatei. Hier ist eine vollständige Anwendung, die ein Hugging Face-Modell bedient (am Beispiel von openai-community/gpt2):

# app.py
from flask import Flask
from transformers import pipeline
app = Flask(__name__)
generator = pipeline('text-generation', model='openai-community/gpt2')
@app.route("/")
def hello_world():
    output = generator("Hello, world,")
    return output[0]['generated_text']
// requirements.txt
Flask ~= 3.0
gunicorn ~= 23.0
torch ~= 2.5
numpy ~= 2.1
transformers ~= 4.46
huggingface_hub[cli] ~= 0.26
// scaffoldly.json
{
  "name": "python-huggingface",
  "runtime": "python:3.12",
  "handler": "localhost:8000",
  "files": ["app.py"],
  "packages": ["pip:requirements.txt"],
  "resources": ["arn::elasticfilesystem:::file-system/.cache"],
  "schedules": {
    "@immediately": "huggingface-cli download openai-community/gpt2"
  },
  "scripts": {
    "start": "gunicorn app:app"
  },
  "memorySize": 1024
}

Wie es funktioniert

Scaffoldly macht hinter den Kulissen einige clevere Dinge:

  1. Intelligenter Containerbau:

    • Erstellt automatisch einen für Lambda optimierten Docker-Container
    • Verwaltet alle Python-Abhängigkeiten, einschließlich PyTorch
    • Schiebt an ECR, ohne dass Sie Docker-Befehle schreiben müssen
  2. Effiziente Modellverwaltung:

    • Verwendet Amazon EFS zum Zwischenspeichern der Modelldateien
    • Ladet Modelle nach der Bereitstellung vorab herunter, um einen schnelleren Kaltstart zu ermöglichen
    • Fügt den Cache automatisch in Lambda ein
  3. Lambda-Ready-Setup:

    • Rufen Sie einen richtigen WSGI-Server (Gunicorn) auf
    • Erstellt eine öffentliche Lambda-Funktions-URL
    • Proxy-Funktions-URL-Anfragen an Gunicorn
    • Verwaltet IAM-Rollen und -Berechtigungen

Wie die Bereitstellung aussieht

Hier ist die Ausgabe eines Npx-Scaffoldly-Deploy-Befehls, den ich in diesem Beispiel ausgeführt habe:

Deploy Hugging Face Models to AWS Lambda in teps

Reale Leistung und Kosten

Kosten: ~0,20 $/Tag für AWS Lambda, ECR und EFS

Kaltstart: ~20 Sekunden für die erste Anforderung (Modellladen)

Warme Anfragen: 5–20 Sekunden (CPU-basierte Inferenz)

Während dieses Setup CPU-Inferenz verwendet (die langsamer als die GPU ist), ist es eine unglaublich kostengünstige Möglichkeit, mit ML-Modellen zu experimentieren oder Endpunkte mit geringem Datenverkehr zu bedienen.

Anpassung für andere Modelle

Möchten Sie ein anderes Modell verwenden? Aktualisieren Sie einfach zwei Dateien:

  1. Ändern Sie das Modell in app.py:
 npx scaffoldly create app --template python-huggingface
  1. Aktualisieren Sie den Download in scaffoldly.json:
 cd my-app && npx scaffoldly deploy

Verwendung privater oder Gated-Modelle

Scaffoldly unterstützt private und Gated-Modelle über die Umgebungsvariable HF_TOKEN. Sie können Ihren Hugging Face-Token auf verschiedene Arten hinzufügen:

  • Lokale Entwicklung: Zu Ihrem Shell-Profil hinzufügen (.bashrc, .zprofile usw.):
# app.py
from flask import Flask
from transformers import pipeline
app = Flask(__name__)
generator = pipeline('text-generation', model='openai-community/gpt2')
@app.route("/")
def hello_world():
    output = generator("Hello, world,")
    return output[0]['generated_text']
  • CI/CD: Als GitHub Actions Secret hinzufügen:
// requirements.txt
Flask ~= 3.0
gunicorn ~= 23.0
torch ~= 2.5
numpy ~= 2.1
transformers ~= 4.46
huggingface_hub[cli] ~= 0.26

Der Token wird automatisch sowohl zum Herunterladen als auch zum Zugreifen auf Ihre privaten oder geschlossenen Modelle verwendet.

CI/CD-Bonus

Scaffoldly generiert sogar eine GitHub-Aktion für automatisierte Bereitstellungen:

// scaffoldly.json
{
  "name": "python-huggingface",
  "runtime": "python:3.12",
  "handler": "localhost:8000",
  "files": ["app.py"],
  "packages": ["pip:requirements.txt"],
  "resources": ["arn::elasticfilesystem:::file-system/.cache"],
  "schedules": {
    "@immediately": "huggingface-cli download openai-community/gpt2"
  },
  "scripts": {
    "start": "gunicorn app:app"
  },
  "memorySize": 1024
}

Probieren Sie es selbst aus

Das vollständige Beispiel ist auf GitHub verfügbar:
scaffoldly/scaffoldly-examples#python-huggingface

Und Sie können Ihre eigene Kopie dieses Beispiels erstellen, indem Sie Folgendes ausführen:

generator = pipeline('text-generation', model='your-model-here')

Sie können sehen, wie es live läuft (obwohl die Antworten aufgrund von CPU-Rückschlüssen langsam sein können):
Live-Demo

Was kommt als nächstes?

  • Versuchen Sie, verschiedene Hugging Face-Modelle einzusetzen
  • Treten Sie der Scaffoldly-Community auf Discord bei
  • Schauen Sie sich andere Beispiele an
  • Markieren Sie unsere Repos, wenn Sie dies nützlich fanden!
    • Die Scaffoldly-Toolchain
    • Das Scaffoldly-Beispiel-Repository

Lizenzen

Scaffoldly ist Open Source und willkommene Beiträge aus der Community.

  • Die Beispiele sind mit der Apache-2.0-Lizenz lizenziert.
  • Die scaffoldly-Toolchain ist mit der FSL-1.1-Apache-2.0-Lizenz lizenziert.

Welche anderen Modelle möchten Sie in AWS Lambda ausführen? Lass es mich in den Kommentaren wissen!

Das obige ist der detaillierte Inhalt vonStellen Sie Hugging Face-Modelle in Schritten für AWS Lambda bereit. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu findenSo verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu findenMar 05, 2025 am 09:58 AM

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

So herunterladen Sie Dateien in PythonSo herunterladen Sie Dateien in PythonMar 01, 2025 am 10:03 AM

Python bietet eine Vielzahl von Möglichkeiten zum Herunterladen von Dateien aus dem Internet, die über HTTP über das Urllib -Paket oder die Anforderungsbibliothek heruntergeladen werden können. In diesem Tutorial wird erläutert, wie Sie diese Bibliotheken verwenden, um Dateien von URLs von Python herunterzuladen. Anfragen Bibliothek Anfragen ist eine der beliebtesten Bibliotheken in Python. Es ermöglicht das Senden von HTTP/1.1 -Anfragen, ohne die URLs oder die Formulierung von Postdaten manuell hinzuzufügen. Die Anforderungsbibliothek kann viele Funktionen ausführen, einschließlich: Formulardaten hinzufügen Fügen Sie mehrteilige Datei hinzu Greifen Sie auf Python -Antwortdaten zu Eine Anfrage stellen Kopf

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Mar 10, 2025 pm 06:54 PM

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Bildfilterung in PythonBildfilterung in PythonMar 03, 2025 am 09:44 AM

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

Wie man mit PDF -Dokumenten mit Python arbeitetWie man mit PDF -Dokumenten mit Python arbeitetMar 02, 2025 am 09:54 AM

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Wie kann man mit Redis in Django -Anwendungen zwischenstrichenWie kann man mit Redis in Django -Anwendungen zwischenstrichenMar 02, 2025 am 10:10 AM

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Einführung des natürlichen Sprach -Toolkits (NLTK)Einführung des natürlichen Sprach -Toolkits (NLTK)Mar 01, 2025 am 10:05 AM

Die natürliche Sprachverarbeitung (NLP) ist die automatische oder semi-automatische Verarbeitung der menschlichen Sprache. NLP ist eng mit der Linguistik verwandt und hat Verbindungen zur Forschung in kognitiven Wissenschaft, Psychologie, Physiologie und Mathematik. In der Informatik

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Mar 10, 2025 pm 06:52 PM

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.