suchen
HeimBackend-EntwicklungPython-TutorialWie kann ich benutzerdefinierte Textbeschriftungen zu Datenpunkten in einem Matplotlib-Streudiagramm hinzufügen?

How Can I Add Custom Text Labels to Data Points in a Matplotlib Scatter Plot?

Anpassen von Textbeschriftungen auf Streudiagramm-Datenpunkten

Beim Erstellen eines Streudiagramms ist es oft nützlich, Datenpunkte mit zusätzlichen Informationen zu kommentieren. Dies kann besonders hilfreich sein, um Punkte zu unterscheiden, die möglicherweise in einem Cluster zusammengefasst sind. Ein häufiges Szenario ist die Notwendigkeit, an jedem Datenpunkt unterschiedliche Zahlen anzuzeigen, was mit der Funktion annotate() erreicht werden kann.

Betrachten Sie den folgenden Datensatz:

y = [2.56422, 3.77284, 3.52623, 3.51468, 3.02199]
x = [0.15, 0.3, 0.45, 0.6, 0.75]
n = [58, 651, 393, 203, 123]

Um eine Streuung zu erstellen Plot mit entsprechenden Zahlen, die an jedem Punkt annotiert sind:

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

# Plot scatter points
ax.scatter(x, y)

# Annotate points with corresponding numbers
for i, txt in enumerate(n):
    ax.annotate(txt, (x[i], y[i]))

# Display plot
plt.show()

Die Funktion annotate() nimmt den anzuzeigenden Text, gefolgt von den Koordinaten des Datenpunkts. Es bietet verschiedene Formatierungsoptionen, einschließlich Schriftgröße, Farbe und Ausrichtung. Weitere Informationen finden Sie in der Matplotlib-Dokumentation.

Das obige ist der detaillierte Inhalt vonWie kann ich benutzerdefinierte Textbeschriftungen zu Datenpunkten in einem Matplotlib-Streudiagramm hinzufügen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie werden Arrays im wissenschaftlichen Computer mit Python verwendet?Wie werden Arrays im wissenschaftlichen Computer mit Python verwendet?Apr 25, 2025 am 12:28 AM

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Wie gehen Sie mit verschiedenen Python -Versionen im selben System um?Wie gehen Sie mit verschiedenen Python -Versionen im selben System um?Apr 25, 2025 am 12:24 AM

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

Was sind einige Vorteile bei der Verwendung von Numpy -Arrays gegenüber Standard -Python -Arrays?Was sind einige Vorteile bei der Verwendung von Numpy -Arrays gegenüber Standard -Python -Arrays?Apr 25, 2025 am 12:21 AM

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

Wie wirkt sich die homogene Natur der Arrays auf die Leistung aus?Wie wirkt sich die homogene Natur der Arrays auf die Leistung aus?Apr 25, 2025 am 12:13 AM

Der Einfluss der Homogenität von Arrays auf die Leistung ist doppelt: 1) Homogenität ermöglicht es dem Compiler, den Speicherzugriff zu optimieren und die Leistung zu verbessern. 2) aber begrenzt die Typ -Vielfalt, was zu Ineffizienz führen kann. Kurz gesagt, die Auswahl der richtigen Datenstruktur ist entscheidend.

Was sind einige Best Practices für das Schreiben von ausführbaren Python -Skripten?Was sind einige Best Practices für das Schreiben von ausführbaren Python -Skripten?Apr 25, 2025 am 12:11 AM

TocraftexecutablePythonScripts, folge theseBestPractices: 1) addashebangline (#!/Usr/bin/envpython3) tomakethescriptexcutable.2 SetPermissions withchmod xyour_script.py.3) organisation -bithacleardocstringanduseInname == "__ __": FormAcleardocstringanduseInname

Wie unterscheiden sich Numpy Arrays von den Arrays, die mit dem Array -Modul erstellt wurden?Wie unterscheiden sich Numpy Arrays von den Arrays, die mit dem Array -Modul erstellt wurden?Apr 24, 2025 pm 03:53 PM

NumpyarraysarebetterFornumericaloperations und multi-dimensionaldata, whilethearraymoduleiStableforbasic, an Gedächtniseffizienten

Wie vergleichen sich die Verwendung von Numpy -Arrays mit der Verwendung der Array -Modularrays in Python?Wie vergleichen sich die Verwendung von Numpy -Arrays mit der Verwendung der Array -Modularrays in Python?Apr 24, 2025 pm 03:49 PM

NumpyarraysarebetterforeheavynumericalComputing, während der projectwithsimpledatatypes.1) numpyarraysoferversatility und -PerformanceForlargedataSets und Compoxexoperations.2) thearraysoferversStility und Mächnory-Effefef

Wie bezieht sich das CTypes -Modul auf Arrays in Python?Wie bezieht sich das CTypes -Modul auf Arrays in Python?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulationsc-stylearraysinpython.1) usectypestoInterfaceWithClibraryForperformance.2) createCec-stylearraysFornumericalComputationen.3) PassarrayStocfunctionsFectionFicecher-Operationen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung