suchen
HeimBackend-EntwicklungPython-TutorialPip vs. Easy_install: Warum ist Pip der bevorzugte Python-Paketmanager?

Pip vs. Easy_install: Why is Pip the Preferred Python Package Manager?

Pip vs. Easy_Install: Eintauchen in die Debatte

Der oben zitierte Tweet löste eine heftige Debatte unter Python-Benutzern aus und spiegelte eine starke Vorliebe für Pip gegenüber seinem Vorgänger easy_install wider . Während beide Tools dem Zweck der Paketverwaltung dienen, gehen die Gründe für diese Präferenz über oberflächliche Unterschiede hinaus.

Ian Bicking, der ursprüngliche Erfinder von pip, skizzierte mehrere wichtige Vorteile gegenüber easy_install:

  • Vollständige Downloads: Pip lädt alle Paketabhängigkeiten vor der Installation herunter, wodurch das Risiko teilweiser Downloads ausgeschlossen wird installiert.
  • Verbesserte Benutzeroberfläche: Pip bietet umfassende Ausgabe- und Fehlermeldungen und verbessert so die Benutzerfreundlichkeit.
  • Abhängigkeitsverfolgung: Pip zeichnet die Gründe dafür sorgfältig auf Paketinstallation, vereinfacht die Fehlerbehebung und sorgt für Konsistenz.
  • Prägnant und zusammenhängend Codebasis: Die Codebasis von Pip ist auf Benutzerfreundlichkeit und programmatische Interaktion ausgelegt.
  • Flexible Installationsoptionen: Pip ermöglicht die flache Installation von Paketen (ohne Egg-Archive) unter Beibehaltung der Metadaten.
  • Versionskontrollunterstützung: Pip lässt sich nahtlos in Git, Mercurial und integrieren Bazaar.
  • Paketdeinstallation: Pip ermöglicht das mühelose Entfernen installierter Pakete.
  • Anforderungsmanagement: Pip vereinfacht die Definition und Reproduktion fester Pakete Sets.

Zusätzlich zu diesen technischen Vorteilen hat Pip aufgrund seiner aktiven Wartung große Beliebtheit erlangt und fortlaufende Funktionsentwicklung. Seine Beliebtheit hat zu breiter Community-Unterstützung und einer Vielzahl von Ressourcen geführt und es zum bevorzugten Paketmanager für die Python-Community gemacht.

Das obige ist der detaillierte Inhalt vonPip vs. Easy_install: Warum ist Pip der bevorzugte Python-Paketmanager?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie unterscheiden sich Numpy Arrays von den Arrays, die mit dem Array -Modul erstellt wurden?Wie unterscheiden sich Numpy Arrays von den Arrays, die mit dem Array -Modul erstellt wurden?Apr 24, 2025 pm 03:53 PM

NumpyarraysarebetterFornumericaloperations und multi-dimensionaldata, whilethearraymoduleiStableforbasic, an Gedächtniseffizienten

Wie vergleichen sich die Verwendung von Numpy -Arrays mit der Verwendung der Array -Modularrays in Python?Wie vergleichen sich die Verwendung von Numpy -Arrays mit der Verwendung der Array -Modularrays in Python?Apr 24, 2025 pm 03:49 PM

NumpyarraysarebetterforeheavynumericalComputing, während der projectwithsimpledatatypes.1) numpyarraysoferversatility und -PerformanceForlargedataSets und Compoxexoperations.2) thearraysoferversStility und Mächnory-Effefef

Wie bezieht sich das CTypes -Modul auf Arrays in Python?Wie bezieht sich das CTypes -Modul auf Arrays in Python?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulationsc-stylearraysinpython.1) usectypestoInterfaceWithClibraryForperformance.2) createCec-stylearraysFornumericalComputationen.3) PassarrayStocfunctionsFectionFicecher-Operationen.

Definieren Sie 'Array' und 'Liste' im Kontext von Python.Definieren Sie 'Array' und 'Liste' im Kontext von Python.Apr 24, 2025 pm 03:41 PM

Inpython, eine "Liste" iSaverSatile, mutablesquencethatcanholdmixedDatatypes, während "Array" iSamorememory-effizientes, homogenoussequencequiringelementementsOfthesametype.1) ListareidealfordVeredatastorageAndmanipulationDuetothisiflexflexibilität

Ist eine Python -Liste veränderlich oder unveränderlich? Was ist mit einem Python -Array?Ist eine Python -Liste veränderlich oder unveränderlich? Was ist mit einem Python -Array?Apr 24, 2025 pm 03:37 PM

PythonlistsandArraysarBothmus.1) listsareflexiBleDsupportheterogenDatabUtarelessMemoryeffizient.2) Arraysaremoremory-effizientforhomogenousDatAbutLessvertile, das KorrectTypecodusagetoavoidoVoidERRors erfordert.

Python vs. C: Verständnis der wichtigsten UnterschiedePython vs. C: Verständnis der wichtigsten UnterschiedeApr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Python vs. C: Welche Sprache für Ihr Projekt zu wählen?Python vs. C: Welche Sprache für Ihr Projekt zu wählen?Apr 21, 2025 am 12:17 AM

Die Auswahl von Python oder C hängt von den Projektanforderungen ab: 1) Wenn Sie eine schnelle Entwicklung, Datenverarbeitung und Prototypdesign benötigen, wählen Sie Python. 2) Wenn Sie eine hohe Leistung, eine geringe Latenz und eine schließende Hardwarekontrolle benötigen, wählen Sie C.

Erreichen Sie Ihre Python -Ziele: Die Kraft von 2 Stunden täglichErreichen Sie Ihre Python -Ziele: Die Kraft von 2 Stunden täglichApr 20, 2025 am 12:21 AM

Indem Sie täglich 2 Stunden Python -Lernen investieren, können Sie Ihre Programmierkenntnisse effektiv verbessern. 1. Lernen Sie neues Wissen: Lesen Sie Dokumente oder sehen Sie sich Tutorials an. 2. Üben: Schreiben Sie Code und vollständige Übungen. 3. Überprüfung: Konsolidieren Sie den Inhalt, den Sie gelernt haben. 4. Projektpraxis: Wenden Sie an, was Sie in den tatsächlichen Projekten gelernt haben. Ein solcher strukturierter Lernplan kann Ihnen helfen, Python systematisch zu meistern und Karriereziele zu erreichen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.