


Mehrere DataFrames auf Spalten in Pandas mit Drei-Wege-Joins zusammenführen
Das Zusammenführen von Daten, eine grundlegende Aufgabe in der Datenanalyse, ermöglicht Ihnen das Kombinieren Daten aus mehreren Quellen. In Pandas ist die Funktion „join()“ ein leistungsstarkes Tool zum Zusammenführen von Datenrahmen. Beim Zusammenfügen mehrerer Datenrahmen können jedoch Herausforderungen im Zusammenhang mit hierarchischen Indizierungsschemata auftreten.
Drei-Wege-Verknüpfungen unter Verwendung einer gemeinsamen Spalte
Stellen Sie sich das Szenario vor, in dem Sie drei haben CSV-Dateien, die jeweils Informationen über dieselbe Gruppe von Personen enthalten. Die erste Spalte in jeder Datei enthält den Namen der Person, während die nachfolgenden Spalten deren Attribute darstellen. Ihr Ziel ist es, diese Dateien in einer einzigen CSV-Datei zusammenzufassen, wobei jede Zeile alle Attribute für jede einzelne Person enthält.
Hierarchische Indizierung und Multi-Index
In Pandas Multi-Index bezieht sich auf ein Indexierungsschema, bei dem jede Indexebene eine andere Spalte darstellt. Beim Zusammenfügen von Datenrahmen wird ein Multiindex verwendet, um die Daten basierend auf gemeinsamen Werten auszurichten. In Ihrem Fall kann die „Join“-Funktion angeben, dass Sie einen Multi-Index benötigen, weil Sie eine einzelne Spalte (Name) verknüpfen, die der Index in jedem Datenrahmen ist.
Datenrahmen ohne zusammenführen Hierarchische Indizierung
In einigen Szenarien ist jedoch möglicherweise keine hierarchische Indizierung erforderlich. Wenn die Datenrahmen eine gemeinsame Spalte haben, können Sie die Lambda-Funktion und das Functools-Paket verwenden, um den Zusammenführungsprozess zu vereinfachen. Hier ist ein Beispiel:
import pandas as pd import functools as ft dfs = [df1, df2, df3, ..., dfN] df_final = ft.reduce(lambda left, right: pd.merge(left, right, on='name'), dfs)
In diesem Code:
- dfs ist eine Liste mit den Datenrahmen, die zusammengeführt werden sollen.
- ft.reduce wendet die Lambda-Funktion an zu jedem Datenrahmenpaar und führt sie basierend auf der Spalte „Name“ zusammen.
- df_final ist das Ergebnis Datenrahmen, der alle Attribute für jede einzelne Person enthält.
Dieser Ansatz eignet sich zum Zusammenführen mehrerer Datenrahmen, ohne dass komplexe hierarchische Indexierungsschemata angegeben werden müssen.
Das obige ist der detaillierte Inhalt vonWie lassen sich mehrere Pandas-DataFrames basierend auf einer gemeinsamen Spalte effizient zusammenführen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

Der Einfluss der Homogenität von Arrays auf die Leistung ist doppelt: 1) Homogenität ermöglicht es dem Compiler, den Speicherzugriff zu optimieren und die Leistung zu verbessern. 2) aber begrenzt die Typ -Vielfalt, was zu Ineffizienz führen kann. Kurz gesagt, die Auswahl der richtigen Datenstruktur ist entscheidend.

TocraftexecutablePythonScripts, folge theseBestPractices: 1) addashebangline (#!/Usr/bin/envpython3) tomakethescriptexcutable.2 SetPermissions withchmod xyour_script.py.3) organisation -bithacleardocstringanduseInname == "__ __": FormAcleardocstringanduseInname

NumpyarraysarebetterFornumericaloperations und multi-dimensionaldata, whilethearraymoduleiStableforbasic, an Gedächtniseffizienten

NumpyarraysarebetterforeheavynumericalComputing, während der projectwithsimpledatatypes.1) numpyarraysoferversatility und -PerformanceForlargedataSets und Compoxexoperations.2) thearraysoferversStility und Mächnory-Effefef

ctypesallowscreatingandmanipulationsc-stylearraysinpython.1) usectypestoInterfaceWithClibraryForperformance.2) createCec-stylearraysFornumericalComputationen.3) PassarrayStocfunctionsFectionFicecher-Operationen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor
