


Mehrere DataFrames auf Spalten in Pandas mit Drei-Wege-Joins zusammenführen
Das Zusammenführen von Daten, eine grundlegende Aufgabe in der Datenanalyse, ermöglicht Ihnen das Kombinieren Daten aus mehreren Quellen. In Pandas ist die Funktion „join()“ ein leistungsstarkes Tool zum Zusammenführen von Datenrahmen. Beim Zusammenfügen mehrerer Datenrahmen können jedoch Herausforderungen im Zusammenhang mit hierarchischen Indizierungsschemata auftreten.
Drei-Wege-Verknüpfungen unter Verwendung einer gemeinsamen Spalte
Stellen Sie sich das Szenario vor, in dem Sie drei haben CSV-Dateien, die jeweils Informationen über dieselbe Gruppe von Personen enthalten. Die erste Spalte in jeder Datei enthält den Namen der Person, während die nachfolgenden Spalten deren Attribute darstellen. Ihr Ziel ist es, diese Dateien in einer einzigen CSV-Datei zusammenzufassen, wobei jede Zeile alle Attribute für jede einzelne Person enthält.
Hierarchische Indizierung und Multi-Index
In Pandas Multi-Index bezieht sich auf ein Indexierungsschema, bei dem jede Indexebene eine andere Spalte darstellt. Beim Zusammenfügen von Datenrahmen wird ein Multiindex verwendet, um die Daten basierend auf gemeinsamen Werten auszurichten. In Ihrem Fall kann die „Join“-Funktion angeben, dass Sie einen Multi-Index benötigen, weil Sie eine einzelne Spalte (Name) verknüpfen, die der Index in jedem Datenrahmen ist.
Datenrahmen ohne zusammenführen Hierarchische Indizierung
In einigen Szenarien ist jedoch möglicherweise keine hierarchische Indizierung erforderlich. Wenn die Datenrahmen eine gemeinsame Spalte haben, können Sie die Lambda-Funktion und das Functools-Paket verwenden, um den Zusammenführungsprozess zu vereinfachen. Hier ist ein Beispiel:
import pandas as pd import functools as ft dfs = [df1, df2, df3, ..., dfN] df_final = ft.reduce(lambda left, right: pd.merge(left, right, on='name'), dfs)
In diesem Code:
- dfs ist eine Liste mit den Datenrahmen, die zusammengeführt werden sollen.
- ft.reduce wendet die Lambda-Funktion an zu jedem Datenrahmenpaar und führt sie basierend auf der Spalte „Name“ zusammen.
- df_final ist das Ergebnis Datenrahmen, der alle Attribute für jede einzelne Person enthält.
Dieser Ansatz eignet sich zum Zusammenführen mehrerer Datenrahmen, ohne dass komplexe hierarchische Indexierungsschemata angegeben werden müssen.
Das obige ist der detaillierte Inhalt vonWie lassen sich mehrere Pandas-DataFrames basierend auf einer gemeinsamen Spalte effizient zusammenführen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Dreamweaver CS6
Visuelle Webentwicklungstools

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),
