


Keras LSTMs verstehen
Daten für die Zeitreihenanalyse umformen
In Keras werden Zeitreihendaten normalerweise mit dem in ein dreidimensionales Array umgeformt Dimensionen [Samples, Zeitschritte, Features]. Dieses Format ist für LSTM-Ebenen erforderlich, die Daten im Laufe der Zeit sequentiell verarbeiten.
- Beispiele: Die Anzahl der Sequenzen in Ihrem Datensatz
- Zeitschritte : Die Länge jeder Sequenz (Anzahl der Male). Schritte)
- Merkmale: Die Anzahl der Eingabemerkmale bei jedem Zeitschritt
Zum Beispiel, wenn Sie 5 Trainingssequenzen mit jeweils 10 Zeitschritten und 1 haben Funktion würden Ihre Daten in (5, 10, 1) umgeformt.
Stateful LSTMs
Zustandsbehaftete LSTMs ermöglichen es dem Modell, seinen internen Zustand zwischen Chargen beizubehalten. Dies bedeutet, dass sich das Modell die verborgenen Zustände nach der Verarbeitung eines Stapels merkt und sie als Eingabe für den nächsten Stapel verwendet. Dies ist besonders nützlich beim Umgang mit sequentiellen Daten, bei denen die aktuelle Ausgabe von den vorherigen Eingaben abhängt.
In dem von Ihnen bereitgestellten Keras-Code ist stateful=True auf True gesetzt, was anzeigt, dass der LSTM zustandsbehaftet ist. Die Batch-Größe ist auf 1 gesetzt, was bedeutet, dass das Modell jeweils eine Sequenz verarbeitet. Das Modell behält die Zellspeicherwerte zwischen den Trainingsläufen bei und ermöglicht so das Erlernen der langfristigen Abhängigkeiten in den Daten.
Zeitschritte und Funktionen
- Zeitschritte : Die Anzahl der Zeitschritte in den Eingabedaten stellt die Länge der betrachteten Sequenz dar. Im Bild stellen die rosa Kästchen die Länge der Sequenz dar.
- Merkmale: Jeder Zeitschritt verfügt über eine Reihe von Eingabemerkmalen, bei denen es sich um die vom LSTM verwendeten Werte handelt. Im Bild ist die Anzahl der Features die Anzahl der grünen Kästchen in jedem rosa Kästchen.
Wenn Sie mit multivariaten Zeitreihen arbeiten, bei denen jeder Zeitschritt mehrere Eingabemerkmale hat (z. B. Aktienkurse). ), ist die Anzahl der Features größer als 1.
Grundlegendes zur LSTM-Architektur
Die von Ihnen bereitgestellte Keras LSTM-Implementierung verfügt über ein einziges LSTM-Schicht mit 4 Einheiten und einer Rückgabesequenz von True. Dies bedeutet, dass das LSTM für jeden Eingabezeitschritt eine Sequenz der Länge 4 ausgibt.
Das Modell wird dann mit der Funktion des mittleren quadratischen Fehlerverlusts und dem Adam-Optimierer kompiliert. Die Trainingsschleife iteriert über 100 Epochen mit einer Stapelgröße von 1.
Es ist wichtig zu beachten, dass dieses LSTM-Modell darauf ausgelegt ist, den nächsten Zeitschritt basierend auf den vorherigen Zeitschritten vorherzusagen. Das Modell kann jedoch für andere Aufgaben wie Sequenzklassifizierung oder Sprachmodellierung modifiziert werden, indem die Ausgabeebene und die Verlustfunktion geändert werden.
Das obige ist der detaillierte Inhalt vonWie forme ich Zeitreihendaten für die Verwendung mit Keras-LSTMs um und welche Bedeutung haben zustandsbehaftete LSTMs und die Parameter „Zeitschritte' und „Funktionen'?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc

ListsandNumPyarraysinPythonhavedifferentmemoryfootprints:listsaremoreflexiblebutlessmemory-efficient,whileNumPyarraysareoptimizedfornumericaldata.1)Listsstorereferencestoobjects,withoverheadaround64byteson64-bitsystems.2)NumPyarraysstoredatacontiguou

TensurepythonscriptsBehavectelyAcrossdevelopment, Staging und Produktion, UsethesStrategien: 1) Umweltvariablenforsimplesettings, 2) configurationFilesForComplexSetups und 3) dynamikloadingForAdaptability.eachMethodofferiqueNefits und Requiresca

Die grundlegende Syntax für die Python -Liste ist die Liste [START: STOP: STEP]. 1.Start ist der erste Elementindex, 2.Stop ist der erste Elementindex, und 3.Step bestimmt die Schrittgröße zwischen den Elementen. Scheiben werden nicht nur zum Extrahieren von Daten verwendet, sondern auch zum Ändern und Umkehrlisten.

ListSoutPer -CharakterArraysin: 1) Dynamics und Dynamics und 3), 2) StoringHeterogenData und 3) MemoryefficiencyForSparsedata, ButmayHavesLightPerformanceCostIncustonTectorationOperationen.

Toconvertapythonarraytoalist, Usethelist () constructororageneratorexpression.1) ImportThearrayModuleandCreateanarray.2) Uselist (arr) oder [xForxinarr] Toconvertittoalist in Betracht, überlegt Performance undMoryefficiencyForlargedatasets.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software
