


So generieren Sie dynamische (parametrisierte) Unit-Tests in Python
Einführung
Beim Testen Bei komplexen Funktionen ist es häufig erforderlich, mehrere Testfälle mit leicht unterschiedlichen Eingaben zu erstellen. Das manuelle Erstellen jedes Testfalls kann mühsam und fehleranfällig sein. Hier kommen parametrisierte Tests ins Spiel.
Parametrisierung
Parametrisierung ermöglicht es Ihnen, einen einzelnen Testfall zu definieren und eine Liste von Parameterwerten bereitzustellen, um den Test für jeden auszuführen Satz von Parametern. Dieser Ansatz automatisiert die Testfallgenerierung und stellt sicher, dass alle möglichen Eingaben getestet werden.
Verwendung des Parametrizers von pytest
pytest bietet einen praktischen Dekorator, @pytest.mark.parametrize, für Parametrierung von Testfunktionen. Als Argument wird eine Liste von Tupeln oder Wörterbüchern verwendet, die jeweils einen Satz Parameterwerte darstellen.
import pytest test_data = [ ("foo", "a", "a"), ("bar", "a", "b"), ("lee", "b", "b"), ] @pytest.mark.parametrize("name, a, b", test_data) def test_sequence(name, a, b): assert a == b
Dieser Code generiert drei Tests, einen für jeden Parametersatz in test_data. Die Testnamen werden automatisch basierend auf den Parameterwerten generiert.
Verwendung des parametrisierten Pakets
Das parametrisierte Paket bietet eine flexiblere Schnittstelle für die Parametrisierung. Sie können damit eine Generatorfunktion definieren, die eine Folge von Testfällen zurückgibt.
from parameterized import parameterized test_data = [ ("foo", "a", "a"), ("bar", "a", "b"), ("lee", "b", "b"), ] @parameterized.expand(test_data) def test_sequence(name, a, b): assert a == b
Auch dieser Code generiert drei Tests, einen für jeden Parametersatz in test_data. Die Testnamen werden automatisch generiert.
Vorteile
Die Verwendung parametrisierter Tests bietet mehrere Vorteile:
- Reduzierte Codeduplizierung: Erzeugt mehrere Testfälle mit nur geringfügigen Abweichungen.
- Verbesserte Lesbarkeit: Hält den Testcode prägnant und leicht verständlich.
- Erweiterte Testabdeckung: Stellt sicher, dass alle möglichen Szenarien getestet werden.
- Erhöhte Wartbarkeit: Erleichtert die Aktualisierung von Tests bei Parametern Werte ändern sich.
Das obige ist der detaillierte Inhalt vonWie generiert man effizient parametrisierte Unit-Tests in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.

Python eignet sich für eine schnelle Entwicklung und Datenverarbeitung, während C für hohe Leistung und zugrunde liegende Kontrolle geeignet ist. 1) Python ist einfach zu bedienen, mit prägnanter Syntax, und eignet sich für Datenwissenschaft und Webentwicklung. 2) C hat eine hohe Leistung und eine genaue Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

Die Zeit, die zum Erlernen von Python erforderlich ist, variiert von Person zu Person, hauptsächlich von früheren Programmiererfahrungen, Lernmotivation, Lernressourcen und -methoden und Lernrhythmus. Setzen Sie realistische Lernziele und lernen Sie durch praktische Projekte am besten.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung