suchen
HeimBackend-EntwicklungPython-TutorialPandas-Spaltenzugriff: Punktnotation vs. eckige Klammern – wann welche verwenden?

Pandas Column Access: Dot Notation vs. Square Brackets – When to Use Which?

Attributzugriff: Punkt vs. eckige Klammern in Pandas

In Pandas ist der Zugriff auf eine Spalte sowohl über den Attributzugriff (Punktnotation) als auch über eckige Klammern möglich. Obwohl beide Ansätze zum gleichen Ergebnis führen, sind subtile Unterschiede zu berücksichtigen.

Betrachten Sie das folgende Beispiel:

import pandas

d = {'col1': 2, 'col2': 2.5}
df = pandas.DataFrame(data=d, index=[0])

print(df['col2'])
print(df.col2)

Beide Methoden liefern das gleiche Ergebnis:

2.5

Punktnotation: Attributzugriff

df.col2 verwendet die Attributzugriffsfunktion. Das dem Spaltennamen entsprechende Attribut wird direkt verfügbar gemacht. Dies ist eine praktische Abkürzung, die funktional äquivalent ist zu:

df.__getitem__('col2')

Eckige Klammern: Spaltenindizierung

df['col2'] verwendet die Indizierung in eckigen Klammern. Dieser Ansatz ist flexibler und ermöglicht verschiedene Manipulationen, die über den Attributzugriff hinausgehen. Sie können beispielsweise mehrere Spalten indizieren:

df[['col1', 'col2']]

Vorbehalte beim Attributzugriff

Der Attributzugriff ist zwar bequem, weist jedoch einige Einschränkungen auf:

  • Keine Spaltenhinzufügung: Der Attributzugriff erlaubt das Hinzufügen neuer Spalten zu einem DataFrame nicht (z. B. df.new_col = x nicht). Arbeit).
  • Namespaced Column Names: Der Attributzugriff schlägt für Spalten mit Leerzeichen oder ganzzahligen Namen fehl (z. B. df.'col 1' oder df.2).

In solchen Szenarien wird empfohlen, die Indizierung in eckigen Klammern zu verwenden, um die ordnungsgemäße Funktionalität sicherzustellen.

Das obige ist der detaillierte Inhalt vonPandas-Spaltenzugriff: Punktnotation vs. eckige Klammern – wann welche verwenden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu findenSo verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu findenMar 05, 2025 am 09:58 AM

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Mar 10, 2025 pm 06:54 PM

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Bildfilterung in PythonBildfilterung in PythonMar 03, 2025 am 09:44 AM

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

Wie man mit PDF -Dokumenten mit Python arbeitetWie man mit PDF -Dokumenten mit Python arbeitetMar 02, 2025 am 09:54 AM

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Wie kann man mit Redis in Django -Anwendungen zwischenstrichenWie kann man mit Redis in Django -Anwendungen zwischenstrichenMar 02, 2025 am 10:10 AM

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Mar 10, 2025 pm 06:52 PM

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Einführung in die parallele und gleichzeitige Programmierung in PythonEinführung in die parallele und gleichzeitige Programmierung in PythonMar 03, 2025 am 10:32 AM

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete

So implementieren Sie Ihre eigene Datenstruktur in PythonSo implementieren Sie Ihre eigene Datenstruktur in PythonMar 03, 2025 am 09:28 AM

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),