Heim > Artikel > Backend-Entwicklung > Big-O-Notation – Python
Mathematische Notation, die die Obergrenze der Ausführungszeit oder des Speicherplatzverbrauchs eines Algorithmus beschreibt. Es wird als O(f(n)) bezeichnet, wobei f(n) eine Funktion ist, die Zeit oder Raum als Funktion der Größe der Eingabe n darstellt .
Weitere Informationen finden Sie unter: http://bigochheatsheet.com
Beispiel:
import timeit import matplotlib.pyplot as plt import cProfile # O(1) def constant_time_operation(): return 42 # O(log n) def logarithmic_time_operation(n): count = 0 while n > 1: n //= 2 count += 1 return count # O(n) def linear_time_operation(n): total = 0 for i in range(n): total += i return total # O(n log n) def linear_logarithmic_time_operation(n): if n <= 1: return n else: return linear_logarithmic_time_operation(n - 1) + n # O(n^2) def quadratic_time_operation(n): total = 0 for i in range(n): for j in range(n): total += i + j return total # O(2^n) def exponential_time_operation(n): if n <= 1: return 1 else: return exponential_time_operation(n - 1) + exponential_time_operation(n - 1) # O(n!) def factorial_time_operation(n): if n == 0: return 1 else: return n * factorial_time_operation(n - 1) # Function to measure execution time using timeit def measure_time(func, *args): execution_time = timeit.timeit(lambda: func(*args), number=1000) return execution_time def plot_results(results): functions, times = zip(*results) colors = ['skyblue', 'orange', 'green', 'red', 'purple', 'brown', 'pink'] plt.figure(figsize=(14, 8)) plt.bar(functions, times, color=colors) for i, v in enumerate(times): plt.text(i, v + 0.5, f"{v:.6f}", ha='center', va='bottom', rotation=0, color='black') plt.xlabel('Function Complexity') plt.ylabel('Average Time (s)') plt.title('Execution Time of Different Algorithm Complexities') plt.grid(axis='y', linestyle='--', linewidth=0.5, color='gray', alpha=0.5) plt.tight_layout() plt.show() def main(): results = [] results.append(("O(1)", measure_time(constant_time_operation))) results.append(("O(log n)", measure_time(logarithmic_time_operation, 10))) results.append(("O(n)", measure_time(linear_time_operation, 10))) results.append(("O(n log n)", measure_time( linear_logarithmic_time_operation, 10))) results.append(("O(n^2)", measure_time(quadratic_time_operation, 7))) results.append(("O(2^n)", measure_time(exponential_time_operation, 7))) results.append(("O(n!)", measure_time(factorial_time_operation, 112))) plot_results(results) if __name__ == '__main__': cProfile.run("main()", sort="totime", filename="output_profile.prof")
Denken Sie daran, dass es nicht ausreicht, einfach nur die große Notation anzuwenden. Auch wenn dies der erste Schritt ist, gibt es andere Möglichkeiten, den Speicher zu optimieren, zum Beispiel die Verwendung von Slots, Cache, Threads, Parallelität, Prozesse usw.
Danke fürs Lesen!!
Unterstützen Sie mich, indem Sie reagieren und Ihre Meinung äußern.
Das obige ist der detaillierte Inhalt vonBig-O-Notation – Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!