


Warum kann ich keine Funktionsparameter in konstanten Ausdrücken verwenden?
Konstante Ausdrücke sind Ausdrücke, die zur Kompilierungszeit ausgewertet werden können. Consexpr-Funktionen sind Funktionen, die zur Kompilierungszeit ausgewertet werden können, wenn sie mit constexpr-Parametern aufgerufen werden.
Im Code ist die make_const-Funktion eine constexpr-Funktion. Allerdings ist der Parameter i in t1 kein constexpr-Parameter, da er nicht als const angegeben ist.
void t1(const int i) { constexpr int ii = make_const(i); // error: i is not a constant expression }
Um dies zu beheben, kann man i entweder zu einem konstanten Parameter machen, indem man seinen Typ in const int ändert, oder indem Sie t1 selbst als constexpr-Funktion definieren:
void t1(const int i) // const int i to make i a constant parameter { constexpr int ii = make_const(i); }
constexpr int t1(const int i) // constexpr t1 to make t1 a constexpr function { return make_const(i); }
Ein weiteres Problem entsteht, wenn eine constexpr-Funktion innerhalb einer Vorlage verwendet wird Funktion, die einen constexpr-Wert zurückgeben soll.
template<int i> constexpr bool do_something(){ return i; } constexpr int t1(const int i) { return do_something<make_const>(); // error: i is not a constant expression }</make_const></int>
In diesem Fall kann der Compiler nicht garantieren, dass der Parameter i ein konstanter Ausdruck ist, da er vom Wert des an do_something übergebenen Vorlagenparameters abhängt. Um sicherzustellen, dass t1 zur Kompilierungszeit ausgewertet werden kann, muss der Vorlagenparameter i ein konstanter Ausdruck sein.
Ein alternativer Ansatz besteht darin, std::variant und std::integral_constant zu verwenden, um eine Konstante zur Kompilierungszeit zu erstellen kann in Verbindung mit Laufzeitwerten verwendet werden.
template<auto i> using constant_t=std::integral_constant<decltype>; template<auto i> constexpr constant_t<i> constant_v={}; template<auto...is> using var_enum_t=std::variant<constant_t>...>;</constant_t></auto...is></i></auto></decltype></auto>
Dies ermöglicht die Erstellung einer Konstantenvariante zur Kompilierungszeit, die zur Laufzeit mit ausgewählt werden kann std::visit.
auto idx=var_index(3/* 3 can be runtime */); std::visit([](auto three){ // three is a compile time value here }, idx);
Das obige ist der detaillierte Inhalt vonWarum kann ich Funktionsparameter nicht in konstanten Ausdrücken verwenden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Die Hauptunterschiede zwischen C# und c sind Syntax, Speicherverwaltung und Leistung: 1) C# Syntax ist modern, unterstützt Lambda und Linq und C hält C -Funktionen und unterstützt Vorlagen. 2) C# verwaltet den Speicher automatisch, C muss manuell verwaltet werden. 3) C -Leistung ist besser als C#, aber auch die C# -Leistung wird optimiert.

Sie können die Bibliotheken TinyXML, PugixML oder LIBXML2 verwenden, um XML -Daten in C. 1) XML -Dateien zu verarbeiten: Verwenden Sie DOM- oder SAX -Methoden, DOM ist für kleine Dateien geeignet und SAX ist für große Dateien geeignet. 2) XML -Datei generieren: Konvertieren Sie die Datenstruktur in das XML -Format und schreiben Sie in die Datei. In diesen Schritten können XML -Daten effektiv verwaltet und manipuliert werden.

Die Arbeit mit XML -Datenstrukturen in C kann die Bibliothek mit TinyXML oder Pugixml verwenden. 1) Verwenden Sie die PugixML -Bibliothek, um XML -Dateien zu analysieren und zu generieren. 2) Behandeln Sie komplexe verschachtelte XML -Elemente wie Buchinformationen. 3) Optimieren Sie den XML -Verarbeitungscode und es wird empfohlen, effiziente Bibliotheken und Streaming -Parsen zu verwenden. In diesen Schritten können XML -Daten effizient verarbeitet werden.

C dominiert immer noch die Leistungsoptimierung, da die Leistungsverwaltung und die effizienten Ausführungsfunktionen auf niedrigem Level für Spielentwicklung, Finanztransaktionssysteme und eingebettete Systeme unverzichtbar machen. Insbesondere manifestiert es sich als: 1) In der Spieleentwicklung machen Cs Memory Management und effiziente Ausführungsfunktionen von C die bevorzugte Sprache für die Entwicklung der Spiele-Engine. 2) In Finanztransaktionssystemen gewährleisten die Leistungsvorteile von C eine extrem geringe Latenz und einen hohen Durchsatz. 3) In eingebetteten Systemen machen Cs niedrigem Speichermanagement und effiziente Ausführungsfunktionen es in ressourcenbeschränkten Umgebungen sehr beliebt.

Die Auswahl des C XML -Frameworks sollte auf Projektanforderungen basieren. 1) TinyXML ist für ressourcenbezogene Umgebungen geeignet, 2) Pugixml ist für Hochleistungsanforderungen geeignet, 3) Xerces-C unterstützt eine komplexe XMLSchema-Überprüfung, Leistung, Benutzerfreundlichkeit und Lizenzen müssen bei der Auswahl berücksichtigt werden.

C# eignet sich für Projekte, die Entwicklungseffizienz und Type -Sicherheit erfordern, während C für Projekte geeignet ist, die eine hohe Leistung und Hardwarekontrolle erfordern. 1) C# bietet Müllsammlung und LINQ, geeignet für Unternehmensanwendungen und Windows -Entwicklung. 2) C ist bekannt für seine hohe Leistung und die zugrunde liegende Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

C -Codeoptimierung kann durch die folgenden Strategien erreicht werden: 1. Verwalten Sie den Speicher für die Optimierung manuell; 2. Schreiben Sie Code, der den Compiler -Optimierungsregeln entspricht; 3. Wählen Sie geeignete Algorithmen und Datenstrukturen aus; 4. Verwenden Sie Inline -Funktionen, um den Call Overhead zu reduzieren. 5. Template Metaprogrammierung anwenden, um zur Kompilierungszeit zu optimieren. 6. Vermeiden Sie unnötiges Kopieren, verwenden Sie bewegliche Semantik- und Referenzparameter. 7. Verwenden Sie const korrekt, um die Compiler -Optimierung zu unterstützen. 8. Wählen Sie geeignete Datenstrukturen wie std :: vector aus.

Das volatile Schlüsselwort in C wird verwendet, um den Compiler darüber zu informieren, dass der Wert der Variablen außerhalb der Codekontrolle geändert werden kann und daher nicht optimiert werden kann. 1) Es wird häufig zum Lesen von Variablen verwendet, die durch Hardware- oder Interrupt -Dienstprogramme wie Sensorstatus geändert werden können. 2) Flüchtige kann Multi-Thread-Sicherheit nicht garantieren und sollte Mutex-Schlösser oder Atomoperationen verwenden. 3) Die Verwendung von volatilen kann zu geringfügigen Leistung führen, um die Programmkorrektheit zu gewährleisten.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Dreamweaver CS6
Visuelle Webentwicklungstools

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.
