JSON-Datenanalyse in Python
Frage:
So konvertieren Sie JSON-Daten in Python Objekte?
Hintergrund:
Sie erhalten ein JSON-Datenobjekt von der Facebook-API und möchten es in einer Datenbank speichern. Die Django-Ansicht, die Sie derzeit verwenden, wird durch den folgenden Code dargestellt:
response = request.POST user = FbApiUser(user_id = response['id']) user.name = response['name'] user.username = response['username'] user.save()
Das funktioniert gut, aber Sie möchten wissen, wie man mit komplexen JSON-Datenobjekten umgeht. Sie wünschten, es gäbe eine Möglichkeit, dieses JSON-Objekt zur einfacheren Verwendung in ein Python-Objekt zu konvertieren.
Lösung:
In Python 3 können Sie dies ganz einfach mit SimpleNamespace und object_hook tun:
import json from types import SimpleNamespace data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}' # 将JSON解析为带有对应于dict键的属性的对象。 x = json.loads(data, object_hook=lambda d: SimpleNamespace(**d)) print(x.name, x.hometown.name, x.hometown.id)
In Python 2 können Sie „namedtuple“ und „object_hook“ verwenden (diese Methode ist jedoch für eine große Anzahl verschachtelter Objekte sehr langsam):
import json from collections import namedtuple data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}' # 将JSON解析为带有对应于dict键的属性的对象。 x = json.loads(data, object_hook=lambda d: namedtuple('X', d.keys())(*d.values())) print x.name, x.hometown.name, x.hometown.id
Um diese Funktion einfach wiederzuverwenden, können Sie den folgenden Code verwenden:
def _json_object_hook(d): return namedtuple('X', d.keys())(*d.values()) def json2obj(data): return json.loads(data, object_hook=_json_object_hook) x = json2obj(data)
Das obige ist der detaillierte Inhalt vonWie konvertiere ich JSON-Daten in Python-Objekte?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.