


Warum sollte ich .copy() verwenden, wenn ich Teilmengen von Pandas-DataFrames auswähle?
Die Bedeutung des Kopierens von Datenrahmen in Pandas
Szenario:
Bei der Auswahl einer Teilmenge eines Datenrahmens kommt es häufig vor um auf Code zu stoßen, der mithilfe der Methode .copy() explizit eine Kopie des übergeordneten DataFrame erstellt. Es stellt sich die Frage: Warum ist das notwendig?
Begründung:
Pandas-Datenrahmen verhalten sich anders als herkömmliche Arrays in Programmiersprachen. Beim Indizieren eines Pandas-DataFrames (z. B. my_dataframe[features_list]) erstellt der zurückgegebene Wert keine neue Kopie, sondern gibt eine Ansicht oder einen Verweis auf den ursprünglichen DataFrame zurück. Alle an dieser Ansicht vorgenommenen Änderungen wirken sich direkt auf den ursprünglichen DataFrame aus.
Beispiel:
Bedenken Sie den folgenden Code:
df = pd.DataFrame({'x': [1, 2]}) df_view = df[0:1] # Returns a view of the first row df_view['x'] = -1 # Check the original DataFrame print(df)
Ausgabe:
x 0 -1 1 2
Wie Sie sehen können, hat die Änderung von df_view auch den ursprünglichen df-DataFrame geändert.
Lösung:
Um solche unbeabsichtigten Folgen zu verhindern, wird dies empfohlen um mit der Methode .copy() eine Kopie des DataFrame zu erstellen, bevor Sie ihn ändern. Dadurch wird sichergestellt, dass an der Kopie vorgenommene Änderungen keine Auswirkungen auf den ursprünglichen DataFrame haben.
Überarbeiteter Code:
df = pd.DataFrame({'x': [1, 2]}) df_copy = df[0:1].copy() # Makes a copy of the first row df_copy['x'] = -1 # Check the original DataFrame print(df)
Ausgabe:
x 0 1 1 2
In diesem Fall bleibt df unverändert.
Vorteile des Kopierens von Datenrahmen:
- Schutz der Originaldaten: Verhindert versehentliche Änderungen zum übergeordneten DataFrame.
- Datenisolation: Ermöglicht unabhängige Operationen an verschiedenen Teilmengen eines DataFrame.
- Verbesserte Leistung: Kopieren ermöglicht Optimierungen durch Isolierung von Daten, die für den aktuellen Betrieb nicht erforderlich sind.
Das obige ist der detaillierte Inhalt vonWarum sollte ich .copy() verwenden, wenn ich Teilmengen von Pandas-DataFrames auswähle?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

ToAppendElementStoapythonList, UsTheAppend () methodForsingleElelements, Extend () FormultipleElements, und INSERSt () FORSPECIFIFICEPosition.1) UseAppend () ForaddingOneElementattheend.2) usextend () toaddmultiElementsefficction.3) useInsert () toaddanelementataspeci

TocreateApythonList, usequarebrackets [] andsparateItemswithcommas.1) ListaredynamicandcanholdmixedDatatypes.2) UseAppend (), REME () und SSLICINGFORMIPLUMILATION.3) LISTCOMPRAUMENS

In den Bereichen Finanzen, wissenschaftliche Forschung, medizinische Versorgung und KI ist es entscheidend, numerische Daten effizient zu speichern und zu verarbeiten. 1) In der Finanzierung kann die Verwendung von Speicherzuordnungsdateien und Numpy -Bibliotheken die Datenverarbeitungsgeschwindigkeit erheblich verbessern. 2) Im Bereich der wissenschaftlichen Forschung sind HDF5 -Dateien für die Datenspeicherung und -abnahme optimiert. 3) In der medizinischen Versorgung verbessern die Datenbankoptimierungstechnologien wie die Indexierung und die Partitionierung die Leistung der Datenabfrage. 4) In AI beschleunigen Daten, die Sharding und das verteilte Training beschleunigen, Modelltraining. Die Systemleistung und Skalierbarkeit können erheblich verbessert werden, indem die richtigen Tools und Technologien ausgewählt und Kompromisse zwischen Speicher- und Verarbeitungsgeschwindigkeiten abgewogen werden.

PythonarraysSureScreeatedusedhearrayModule, nicht gebaute Inlikelisten.1) ImportThearrayModule.2) Spezifizieren Sie die THETYPECODE, z.

Zusätzlich zur Shebang -Linie gibt es viele Möglichkeiten, einen Python -Interpreter anzugeben: 1. Verwenden Sie Python -Befehle direkt aus der Befehlszeile; 2. Verwenden Sie Stapeldateien oder Shell -Skripte. 3.. Verwenden Sie Build -Tools wie Make oder CMake; 4. Verwenden Sie Aufgabenläufer wie Invoke. Jede Methode hat ihre Vor- und Nachteile, und es ist wichtig, die Methode auszuwählen, die den Anforderungen des Projekts entspricht.

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor
