


Shared Memory Objects in Multiprocessing
In der Multiprocessing-Bibliothek von Python stehen Sie vor der Herausforderung, große schreibgeschützte Arrays zwischen mehreren Prozessen gleichzeitig zu teilen.
Verwenden der Fork()-Semantik
Wenn Ihr Betriebssystem die Copy-on-Write-Fork()-Semantik verwendet (z. B. Unix), wird dies bei Ihrer schreibgeschützten Datenstruktur der Fall sein für alle untergeordneten Prozesse ohne zusätzlichen Speicherverbrauch zugänglich sein. Dies liegt daran, dass fork() einen Copy-on-Write-Vorgang erstellt, sodass Änderungen an der Datenstruktur durch einen Prozess nur in seinen eigenen Speicherbereich geschrieben werden und die ursprüngliche Datenstruktur für andere Prozesse intakt bleibt.
Array in Shared Memory packen
Um die Effizienz zu steigern, konvertieren Sie Ihr Array in eine NumPy- oder Array-Struktur und speichern Sie es im Shared Memory. Erstellen Sie einen Multiprocessing.Array-Wrapper darum und übergeben Sie ihn an Ihre Funktionen.
Schreibbare gemeinsame Objekte
Wenn Sie beschreibbare gemeinsame Objekte benötigen, verwenden Sie Synchronisierungs- oder Sperrmechanismen. Multiprocessing bietet zwei Methoden:
- Gemeinsamer Speicher für einfache Werte, Arrays oder Ctypes
- Manager-Proxy, bei dem ein Prozess den Speicher speichert und ein Manager den Zugriff von anderen verwaltet
Der Manager-Proxy-Ansatz kann beliebige Python-Objekte verarbeiten, ist jedoch aufgrund der Objektserialisierung und -deserialisierung bei der Kommunikation zwischen Prozessen langsamer.
Alternative Ansätze
Über die Multiverarbeitung hinaus gibt es in Python verschiedene Parallelverarbeitungsbibliotheken. Ziehen Sie diese Optionen in Betracht, wenn Sie spezielle Anforderungen haben, die durch Multiprocessing möglicherweise nicht ausreichend abgedeckt werden.
Das obige ist der detaillierte Inhalt vonWie kann ich große schreibgeschützte Arrays zwischen mehreren Prozessen in Pythons Multiprocessing teilen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.

Python eignet sich für eine schnelle Entwicklung und Datenverarbeitung, während C für hohe Leistung und zugrunde liegende Kontrolle geeignet ist. 1) Python ist einfach zu bedienen, mit prägnanter Syntax, und eignet sich für Datenwissenschaft und Webentwicklung. 2) C hat eine hohe Leistung und eine genaue Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

Die Zeit, die zum Erlernen von Python erforderlich ist, variiert von Person zu Person, hauptsächlich von früheren Programmiererfahrungen, Lernmotivation, Lernressourcen und -methoden und Lernrhythmus. Setzen Sie realistische Lernziele und lernen Sie durch praktische Projekte am besten.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.