


FastAPI UploadFile-Leistung im Vergleich zu Flask
UploadFile-Leistung in FastAPI kann aufgrund von Unterschieden in der Datenverarbeitung langsamer sein als in Flask. UploadFile von FastAPI verwendet asynchrone Methoden, die bei nicht effizienter Handhabung zu Engpässen führen können, während Flask synchrone Methoden verwendet.
Aus diesem Grund kann UploadFile von FastAPI langsamer sein:
- Blockierende E/A:Standardmäßig verwenden die UploadFile-Methoden von FastAPI blockierende E/A-Vorgänge, die den Hauptthread behindern und die API verlangsamen können.
- Daten-Chunking: Starlette (das zugrunde liegende Framework für FastAPI) verwendet eine SpooledTemporaryFile mit einer standardmäßigen max_size von 1 MB. Sobald die Daten diese Größe überschreiten, werden sie in eine temporäre Datei auf der Festplatte geschrieben, was einen weiteren E/A-Overhead verursacht.
Best Practices für effiziente Datei-Uploads in FastAPI:
Asynchrones Dateischreiben mit aiofiles
Verwenden Sie asynchrones Dateischreiben mit der aiofiles-Bibliothek, um Dateien auf nicht blockierende Weise zu schreiben. Dieser Ansatz verbessert die Leistung, insbesondere bei großen Dateien.
Lesen der Datei in Blöcken
Erwägen Sie, die Datei in Blöcken einer bestimmten Größe zu lesen, um zu vermeiden, dass die gesamte Datei in den Speicher geladen wird. Dies verhindert Speicherprobleme und verbessert die Leistung beim Hochladen großer Dateien.
Verwendung von run_in_threadpool()
Um ein Blockieren des Hauptthreads zu vermeiden, verwenden Sie die run_in_threadpool()-Funktion von FastAPI, um blockierende E/A-Vorgänge in einem auszuführen separater Thread. Dies gewährleistet eine nicht blockierende Ausführung dateibezogener Aufgaben.
Direkter Zugriff auf den Anforderungstext als Stream
In Fällen, in denen die Dateispeicherung auf dem Server nicht erforderlich ist, greifen Sie direkt als Stream auf den Anforderungstext zu Stream mit request.stream(). Diese Methode ermöglicht eine effiziente Dateiverwaltung, ohne dass unnötiger E/A-Overhead entsteht.
Das obige ist der detaillierte Inhalt vonWarum ist UploadFile von FastAPI manchmal langsamer als Flask?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Thedifferencebetweenaforloopandawhileloopinpythonisthataforloopisusedwhenthennumnofiterationssisknowninadvance, während

In Python eignen sich für Schleifen für Fälle, in denen die Anzahl der Iterationen bekannt ist, während Schleifen für Fälle geeignet sind, in denen die Anzahl der Iterationen unbekannt ist und mehr Kontrolle erforderlich ist. 1) Für Schleifen eignen sich zum Durchqueren von Sequenzen wie Listen, Zeichenfolgen usw. mit prägnantem und pythonischem Code. 2) Während Schleifen angemessener sind, wenn Sie die Schleife gemäß den Bedingungen steuern oder auf Benutzereingaben warten müssen, müssen Sie jedoch aufmerksam machen, um unendliche Schleifen zu vermeiden. 3) In Bezug auf die Leistung ist die für die Schleife etwas schneller, aber der Unterschied ist normalerweise nicht groß. Durch die Auswahl des richtigen Schleifentyps können Sie die Effizienz und Lesbarkeit Ihres Codes verbessern.

In Python können Listen mit fünf Methoden zusammengeführt werden: 1) Verwenden von Operatoren, die einfach und intuitiv sind, für kleine Listen geeignet sind; 2) Verwenden Sie die Extend () -Methode, um die ursprüngliche Liste direkt zu ändern, die für Listen geeignet sind, die häufig aktualisiert werden müssen. 3) Listenanalyseformeln verwenden, präzise und operativ für Elemente; 4) Verwenden Sie die Funktion iterertools.chain (), um den Speicher effizient zu machen, und für große Datensätze geeignet. 5) Verwenden Sie * Operatoren und Zip () -Funktion, um für Szenen geeignet zu sein, in denen Elemente gepaart werden müssen. Jede Methode hat ihre spezifischen Verwendungen und Vor- und Nachteile, und die Projektanforderungen und die Leistung sollten bei der Auswahl berücksichtigt werden.

Forloopsusedwhenthenumberofofiterationssisknown, whileleloopsusedUntilaconDitionisMet.1) Forloopsardealforsequenceslikelisten, usingSyntax -Like'forfruitinFruits: Print (Frucht) '. 2) WhileloopsuitableFoRuancnownitationCaperitationCountcounts, z. B., z. B., z

Toconcatenatealistoflistsinpython, usextend, listCompresions, itertools.chain, orrecursivefunctions.1) ExtendMethodisStraightforwardbutverbose.2) LISTCOMPRETRAUSIERUNGEN ITCOMPREDREPENSIONSARECONCISEIDEILGEFORTICEFORGELAGELAGERDATASETEN.

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

Dreamweaver CS6
Visuelle Webentwicklungstools

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.
