suchen
HeimBackend-EntwicklungPython-TutorialWie können wir eine Textfolge aus aneinandergereihten Wörtern ohne Leerzeichen effizient in einzelne Wörter aufteilen?

How can we efficiently split a text string of concatenated words without spaces into individual words?

Text in eine Wortliste ohne Leerzeichen aufteilen

Problem

Gegeben sei eine Textzeichenfolge, die aus aneinandergereihten Wörtern ohne Leerzeichen besteht:

Input: "tableapplechairtablecupboard..."

Wie können wir diesen Text effizient in eine Liste einzelner Wörter aufteilen?

Output: ["table", "apple", "chair", "table", ["cupboard", ["cup", "board"]], ...]

Algorithmus

Ein einfacher Ansatz besteht darin, iterativ das längstmögliche Wort im Text zu finden. Dies kann jedoch zu suboptimalen Ergebnissen führen.

Frequenzbasierter Algorithmus

Stattdessen können wir die relative Häufigkeit von Wörtern in der Sprache ausnutzen, um die Genauigkeit zu verbessern:

  1. Modellieren Sie die Wortverteilung: Gehen Sie davon aus, dass Wörter unabhängig voneinander verteilt sind und dem Gesetz von Zipf folgen, wobei die Wortwahrscheinlichkeit umgekehrt proportional zu ihrem Rang ist.
  2. Wortkosten definieren: Die Kosten eines Wortes ist definiert als der Logarithmus des Kehrwerts seiner Wahrscheinlichkeit.
  3. Dynamischer Programmieransatz:

    • Initialisieren Sie ein Kostenarray, bei dem das erste Element ist 0.
    • Suchen Sie für jedes Zeichen im Text das Wort, das die Gesamtkosten für Zeichen bis zu diesem Punkt minimiert.
    • Gehen Sie vom Ende zurück, um die Wortsequenz mit den minimalen Kosten zu rekonstruieren .

Code-Implementierung

<code class="python">from math import log

wordcost = {}  # Dictionary of word costs using Zipf's law

maxword = max(len(word) for word in wordcost)

def infer_spaces(s):
    cost = [0]
    for i in range(1, len(s) + 1):
        candidates = enumerate(reversed(cost[max(0, i - maxword):i]))
        c, k = min((wordcost.get(s[i - k - 1:i], 9e999) + c, k + 1) for k, c in candidates)
        cost.append(c)

    out = []
    i = len(s)
    while i > 0:
        c, k = best_match(i)
        assert c == cost[i]
        out.append(s[i - k:i])
        i -= k

    return " ".join(reversed(out))</code>

Ergebnisse

Dieser Algorithmus ist in der Lage, Text präzise in eine Liste von Wörtern zu segmentieren, sogar in das Fehlen von Leerzeichen.

Beispiel:

Input: "tableapplechairtablecupboard..."
Output: ["table", "apple", "chair", "table", ["cupboard", ["cup", "board"]], ...]

Optimierungen:

  • Suffixbaum : Durch den Aufbau eines Suffixbaums aus der Wortliste kann die Kandidatensuche beschleunigt werden.
  • Aufteilung von Textblöcken: Bei großen Texteingaben kann der Text in Blöcke aufgeteilt werden Minimieren Sie die Speichernutzung und bewahren Sie gleichzeitig die Genauigkeit.

Das obige ist der detaillierte Inhalt vonWie können wir eine Textfolge aus aneinandergereihten Wörtern ohne Leerzeichen effizient in einzelne Wörter aufteilen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Der 2-stündige Python-Plan: ein realistischer AnsatzDer 2-stündige Python-Plan: ein realistischer AnsatzApr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python: Erforschen der primären AnwendungenPython: Erforschen der primären AnwendungenApr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Wie viel Python können Sie in 2 Stunden lernen?Wie viel Python können Sie in 2 Stunden lernen?Apr 09, 2025 pm 04:33 PM

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden?Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden?Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet?Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet?Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Was soll ich tun, wenn das Modul '__builtin__' beim Laden der Gurkendatei in Python 3.6 nicht gefunden wird?Was soll ich tun, wenn das Modul '__builtin__' beim Laden der Gurkendatei in Python 3.6 nicht gefunden wird?Apr 02, 2025 am 07:12 AM

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie verbessert man die Genauigkeit der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse?Wie verbessert man die Genauigkeit der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse?Apr 02, 2025 am 07:09 AM

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...

Wie benutze ich den regulären Ausdruck, um das erste geschlossene Tag zu entsprechen und anzuhalten?Wie benutze ich den regulären Ausdruck, um das erste geschlossene Tag zu entsprechen und anzuhalten?Apr 02, 2025 am 07:06 AM

Wie benutze ich den regulären Ausdruck, um das erste geschlossene Tag zu entsprechen und anzuhalten? Im Umgang mit HTML oder anderen Markup -Sprachen sind häufig regelmäßige Ausdrücke erforderlich, um ...

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor