


Shared-Memory-Objekte in Multiprocessing: Optimierung der Datenfreigabe
Bei Verwendung der Multiprocessing-Bibliothek von Python wird ein großes In-Memory-Array oft mehrfach kopiert Zeiten für verschiedene Prozesse, die dieselbe Funktion nutzen. Um diesen Mehraufwand zu vermeiden, ist es wünschenswert, das Array prozessübergreifend zu teilen, insbesondere wenn es schreibgeschützt ist.
Copy-on-Write-Verhalten von Fork
Im Betrieb Systeme mit Copy-on-Write-Fork-Semantik, wie z. B. UNIX-ähnliche Systeme, wirken sich Änderungen an Datenstrukturen innerhalb des übergeordneten Prozesses nicht auf die untergeordneten Prozesse aus, es sei denn, diese nehmen ihre eigenen Änderungen vor. Solange das Array nicht geändert wird, kann es prozessübergreifend gemeinsam genutzt werden, ohne dass nennenswerte Speicherkosten entstehen.
Multiprocessing.Array für effizientes Array-Sharing
Zu erstellen Um ein gemeinsam genutztes Array ohne Kopieren des Speichers zu erstellen, verwenden Sie Numpy oder Array, um eine effiziente Array-Struktur zu erstellen und diese im gemeinsam genutzten Speicher zu platzieren. Wickeln Sie diese Struktur in multiprocessing.Array ein und übergeben Sie sie an Ihre Funktionen. Dieser Ansatz gewährleistet eine effiziente Datenfreigabe bei gleichzeitiger Minimierung des Overheads.
Schreibbare freigegebene Objekte: Sperren und Synchronisierung
Wenn das freigegebene Objekt Änderungen erfordert, muss es durch Synchronisierung oder Sperrung geschützt werden Mechanismen. Multiprocessing bietet zwei Optionen:
- Gemeinsamer Speicher: Diese Methode eignet sich für einfache Werte, Arrays oder Ctypes und verhindert gleichzeitige Schreibvorgänge durch mehrere Prozesse.
- Manager-Proxy: Dieser Ansatz ermöglicht mehreren Prozessen den Zugriff auf ein gemeinsam genutztes Speicherobjekt, das von einem einzelnen Prozess verwaltet wird, sogar über ein Netzwerk. Es ist weniger effizient als Shared Memory, unterstützt aber beliebige Python-Objekte.
Zusätzliche Überlegungen
- In Python gibt es eine Vielzahl paralleler Verarbeitungsbibliotheken und -ansätze . Ziehen Sie alternative Optionen in Betracht, wenn bestimmte Anforderungen durch Multiprocessing nicht erfüllt werden.
- Überwachen Sie gemeinsam genutzte Objekte sorgfältig, um unbeabsichtigte Änderungen zu vermeiden und die korrekte Funktionalität über Prozesse hinweg sicherzustellen.
- Obwohl Multiprocessing Shared-Memory-Funktionen bietet, ist es wichtig, dies zu tun Verstehen Sie die Einschränkungen und möglichen Auswirkungen auf die Leistung, um Ihren Code effektiv zu optimieren.
Das obige ist der detaillierte Inhalt vonWie kann ich große In-Memory-Arrays effizient prozessübergreifend in der Multiprocessing-Bibliothek von Python teilen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc

ListsandNumPyarraysinPythonhavedifferentmemoryfootprints:listsaremoreflexiblebutlessmemory-efficient,whileNumPyarraysareoptimizedfornumericaldata.1)Listsstorereferencestoobjects,withoverheadaround64byteson64-bitsystems.2)NumPyarraysstoredatacontiguou

TensurepythonscriptsBehavectelyAcrossdevelopment, Staging und Produktion, UsethesStrategien: 1) Umweltvariablenforsimplesettings, 2) configurationFilesForComplexSetups und 3) dynamikloadingForAdaptability.eachMethodofferiqueNefits und Requiresca

Die grundlegende Syntax für die Python -Liste ist die Liste [START: STOP: STEP]. 1.Start ist der erste Elementindex, 2.Stop ist der erste Elementindex, und 3.Step bestimmt die Schrittgröße zwischen den Elementen. Scheiben werden nicht nur zum Extrahieren von Daten verwendet, sondern auch zum Ändern und Umkehrlisten.

ListSoutPer -CharakterArraysin: 1) Dynamics und Dynamics und 3), 2) StoringHeterogenData und 3) MemoryefficiencyForSparsedata, ButmayHavesLightPerformanceCostIncustonTectorationOperationen.

Toconvertapythonarraytoalist, Usethelist () constructororageneratorexpression.1) ImportThearrayModuleandCreateanarray.2) Uselist (arr) oder [xForxinarr] Toconvertittoalist in Betracht, überlegt Performance undMoryefficiencyForlargedatasets.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Dreamweaver CS6
Visuelle Webentwicklungstools

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)
