Heim > Artikel > Backend-Entwicklung > Wie kann ich große In-Memory-Arrays effizient prozessübergreifend in der Multiprocessing-Bibliothek von Python teilen?
Shared-Memory-Objekte in Multiprocessing: Optimierung der Datenfreigabe
Bei Verwendung der Multiprocessing-Bibliothek von Python wird ein großes In-Memory-Array oft mehrfach kopiert Zeiten für verschiedene Prozesse, die dieselbe Funktion nutzen. Um diesen Mehraufwand zu vermeiden, ist es wünschenswert, das Array prozessübergreifend zu teilen, insbesondere wenn es schreibgeschützt ist.
Copy-on-Write-Verhalten von Fork
Im Betrieb Systeme mit Copy-on-Write-Fork-Semantik, wie z. B. UNIX-ähnliche Systeme, wirken sich Änderungen an Datenstrukturen innerhalb des übergeordneten Prozesses nicht auf die untergeordneten Prozesse aus, es sei denn, diese nehmen ihre eigenen Änderungen vor. Solange das Array nicht geändert wird, kann es prozessübergreifend gemeinsam genutzt werden, ohne dass nennenswerte Speicherkosten entstehen.
Multiprocessing.Array für effizientes Array-Sharing
Zu erstellen Um ein gemeinsam genutztes Array ohne Kopieren des Speichers zu erstellen, verwenden Sie Numpy oder Array, um eine effiziente Array-Struktur zu erstellen und diese im gemeinsam genutzten Speicher zu platzieren. Wickeln Sie diese Struktur in multiprocessing.Array ein und übergeben Sie sie an Ihre Funktionen. Dieser Ansatz gewährleistet eine effiziente Datenfreigabe bei gleichzeitiger Minimierung des Overheads.
Schreibbare freigegebene Objekte: Sperren und Synchronisierung
Wenn das freigegebene Objekt Änderungen erfordert, muss es durch Synchronisierung oder Sperrung geschützt werden Mechanismen. Multiprocessing bietet zwei Optionen:
Zusätzliche Überlegungen
Das obige ist der detaillierte Inhalt vonWie kann ich große In-Memory-Arrays effizient prozessübergreifend in der Multiprocessing-Bibliothek von Python teilen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!