Kann Python Monkey Core-Typ-Methoden patchen?
In Python beinhaltet das Monkey-Patching das Ändern des Verhaltens einer vorhandenen Klasse oder eines vorhandenen Objekts zur Laufzeit. Allerdings ist die Erweiterung von Kerntypen wie Ints oder Floats in Python nicht zulässig. Dies wirft Fragen zu den zugrunde liegenden Gründen und möglichen Alternativen auf.
Der Hauptunterschied liegt in der Unveränderlichkeit von Daten in Python. Alle in C-Erweiterungen definierten integrierten Klassen und Methoden sind unveränderlich, um die Datenintegrität über Interpreter hinweg innerhalb desselben Prozesses sicherzustellen. Das Monkeypatching solcher Daten würde sich auf nicht verwandte Interpreter auswirken und zu unerwartetem Verhalten führen.
Im Gegensatz dazu können im Python-Code definierte Klassen Monkeypatched sein, da sie sich im lokalen Interpreter befinden und nicht die gleichen Unveränderlichkeitsprobleme aufwerfen. Daher ist es in Python möglich, benutzerdefinierte Klassen durch Monkey-Patching zu erweitern.
Zum Beispiel kann eine benutzerdefinierte Klasse mit dem Namen „Item“ mit Monkey-Patches versehen werden, um zu Testzwecken eine Methode namens „should_equal“ einzubinden. Dies kann die Lesbarkeit verbessern, indem die Testsyntax optimiert wird:
<code class="python"># Before monkey patching assert_equal(item.price, 19.99) # After monkey patching item.price.should_equal(19.99)</code>
Während Python kein Monkey-Patching von Kerntypen wie Ruby zulässt, bietet es die Flexibilität, benutzerdefinierte Klassen durch diese Technik zu erweitern und auf spezifische Tests einzugehen und Lesbarkeitsanforderungen.
Das obige ist der detaillierte Inhalt vonKönnen Sie Patch-Core-Typ-Methoden in Python manipulieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

Der Einfluss der Homogenität von Arrays auf die Leistung ist doppelt: 1) Homogenität ermöglicht es dem Compiler, den Speicherzugriff zu optimieren und die Leistung zu verbessern. 2) aber begrenzt die Typ -Vielfalt, was zu Ineffizienz führen kann. Kurz gesagt, die Auswahl der richtigen Datenstruktur ist entscheidend.

TocraftexecutablePythonScripts, folge theseBestPractices: 1) addashebangline (#!/Usr/bin/envpython3) tomakethescriptexcutable.2 SetPermissions withchmod xyour_script.py.3) organisation -bithacleardocstringanduseInname == "__ __": FormAcleardocstringanduseInname

NumpyarraysarebetterFornumericaloperations und multi-dimensionaldata, whilethearraymoduleiStableforbasic, an Gedächtniseffizienten

NumpyarraysarebetterforeheavynumericalComputing, während der projectwithsimpledatatypes.1) numpyarraysoferversatility und -PerformanceForlargedataSets und Compoxexoperations.2) thearraysoferversStility und Mächnory-Effefef

ctypesallowscreatingandmanipulationsc-stylearraysinpython.1) usectypestoInterfaceWithClibraryForperformance.2) createCec-stylearraysFornumericalComputationen.3) PassarrayStocfunctionsFectionFicecher-Operationen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung
