Big O Notation ist ein mathematisches Konzept, das verwendet wird, um die Leistung oder Komplexität eines Algorithmus zeitlich und räumlich zu beschreiben, wenn die Eingabegröße zunimmt. Es hilft uns zu verstehen, wie die Laufzeit eines Algorithmus mit größeren Eingaben zunimmt, was einen standardisierteren Vergleich verschiedener Algorithmen ermöglicht.
Warum die Big-O-Notation verwenden?
Beim Vergleich von Algorithmen kann es irreführend sein, sich ausschließlich auf die Ausführungszeit zu verlassen. Beispielsweise könnte ein Algorithmus einen riesigen Datensatz in einer Stunde verarbeiten, während ein anderer vier Stunden benötigt. Die Ausführungszeit kann jedoch je nach Maschine und anderen laufenden Prozessen variieren. Stattdessen verwenden wir die Big-O-Notation, um uns auf die Anzahl der durchgeführten Operationen zu konzentrieren, was ein konsistenteres Maß für die Effizienz bietet.
Beispiel: Zahlen summieren
Lassen Sie uns zwei Möglichkeiten erkunden, die Summe aller Zahlen von 1 bis n zu berechnen:
Option 1: Verwendung einer Schleife
function addUpTo(n) { let total = 0; for (let i = 1; i <h3> Option 2: Verwenden einer Formel </h3> <pre class="brush:php;toolbar:false">function addUpTo(n) { return n * (n + 1) / 2; }
Analyse der Komplexität
Wenn in Option 1 n 100 ist, wird die Schleife 100 Mal ausgeführt. Im Gegensatz dazu führt Option 2 immer eine feste Anzahl von Operationen (Multiplikation, Addition und Division) aus. Also:
- Option 1 ist O(n): Die Zeitkomplexität wächst linear mit n.
- Option 2 ist O(1): Die Zeitkomplexität bleibt unabhängig von der Eingabegröße konstant.
Haftungsausschluss
Während Option 2 drei Operationen umfasst (Multiplikation, Addition, Division), konzentrieren wir uns auf den allgemeinen Trend in der Big-O-Analyse. Anstatt es also als O(3n) auszudrücken, vereinfachen wir es zu O(n). In ähnlicher Weise vereinfacht sich O(n 10) zu O(n) und O(n^2 5n 8) vereinfacht sich zu O(n^2). In der Big-O-Notation betrachten wir das Worst-Case-Szenario, bei dem der Term höchster Ordnung den größten Einfluss auf die Leistung hat.
Es gibt andere Formen der Notation, die über die oben aufgeführten allgemeinen Komplexitäten hinausgehen, wie beispielsweise die logarithmische Zeitkomplexität, ausgedrückt als O(log n).
Was ist die Big-O-Notation?
Die Big-O-Notation ermöglicht es uns, das Wachstum der Laufzeit eines Algorithmus basierend auf der Eingabegröße zu formalisieren. Anstatt uns auf bestimmte Operationszahlen zu konzentrieren, kategorisieren wir Algorithmen in breitere Klassen, darunter:
- Konstante Zeit: O(1) – Die Leistung des Algorithmus ändert sich nicht mit der Eingabegröße.
- Lineare Zeit: O(n) – Die Leistung wächst linear mit der Eingabegröße.
- Quadratische Zeit: O(n^2) – Die Leistung wächst quadratisch mit zunehmender Eingabegröße.
Beispiel für O(n^2)
Betrachten Sie die folgende Funktion, die alle Zahlenpaare von 0 bis n ausgibt:
function addUpTo(n) { let total = 0; for (let i = 1; i <p>In diesem Fall verfügt die Funktion über zwei verschachtelte Schleifen. Wenn also nnn zunimmt, erhöht sich die Anzahl der Operationen quadratisch. Für n=2 gibt es 4 Operationen und für n=3 gibt es 9 Operationen, die zu O(n^2) führen.</p> <h3> Ein weiteres Beispiel: Auf und ab zählen </h3> <pre class="brush:php;toolbar:false">function addUpTo(n) { return n * (n + 1) / 2; }
Auf den ersten Blick könnte man denken, dass es sich um O(n^2) handelt, da es zwei Schleifen enthält. Beide Schleifen laufen jedoch unabhängig voneinander und skalieren linear mit n. Somit beträgt die Gesamtzeitkomplexität O(n).
Vereinfachung der Analyse
Die Analyse aller Aspekte der Codekomplexität kann komplex sein, aber einige allgemeine Regeln können die Dinge vereinfachen:
- Arithmetische Operationen gelten als konstante Zeit.
- Variable Aufgaben sind zeitkonstante.
- Der Zugriff auf Elemente in einem Array (nach Index) oder einem Objekt (nach Schlüssel) ist eine konstante Zeit.
- Für eine Schleife ist die Komplexität die Länge der Schleife multipliziert mit der Komplexität dessen, was innerhalb der Schleife passiert.
Weltraumkomplexität
Während wir uns auf die Zeitkomplexität konzentriert haben, ist es auch möglich, die Raumkomplexität (Speicherkomplexität) mithilfe von Big O zu berechnen. Manche Leute beziehen die Eingabegröße in ihre Berechnungen ein, aber oft ist es sinnvoller, sich ausschließlich auf den vom Algorithmus benötigten Platz zu konzentrieren selbst.
Regeln für Raumkomplexität (basierend auf JavaScript):
- Die meisten primitiven Werte (boolesche Werte, Zahlen usw.) sind konstante Leerzeichen.
- Strings erfordern O(n) Speicherplatz (wobei n die Stringlänge ist).
- Referenztypen (Arrays, Objekte) sind im Allgemeinen O(n), wobei n die Länge des Arrays oder die Anzahl der Schlüssel im Objekt ist.
Ein Beispiel
function printAllPairs(n) { for (var i = 0; i <p>In dieser Funktion beträgt die Raumkomplexität O(1), da wir unabhängig von der Eingabegröße eine konstante Menge an Raum (zwei Variablen) verwenden.</p> <p>Für eine Funktion, die ein neues Array erstellt:<br> </p> <pre class="brush:php;toolbar:false">function countUpAndDown(n) { console.log("Going up!"); for (var i = 0; i = 0; j--) { console.log(j); } console.log("Back down. Bye!"); }
Hier ist die Platzkomplexität O(n), weil wir Platz für ein neues Array zuweisen, das mit der Größe des Eingabearrays wächst.
Abschluss
Big O Notation bietet einen Rahmen für die Analyse der Effizienz von Algorithmen, unabhängig von Hardware und spezifischen Implementierungsdetails. Das Verständnis dieser Konzepte ist für die Entwicklung effizienten Codes von entscheidender Bedeutung, insbesondere wenn die Datengröße zunimmt. Durch die Fokussierung auf die Skalierung der Leistung können Entwickler fundierte Entscheidungen darüber treffen, welche Algorithmen sie in ihren Anwendungen verwenden möchten.
Das obige ist der detaillierte Inhalt vonBig-O-Notation: Eine einfache Anleitung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Es ist für Entwickler wichtig, zu verstehen, wie die JavaScript -Engine intern funktioniert, da sie effizientere Code schreibt und Leistungs Engpässe und Optimierungsstrategien verstehen kann. 1) Der Workflow der Engine umfasst drei Phasen: Parsen, Kompilieren und Ausführung; 2) Während des Ausführungsprozesses führt die Engine dynamische Optimierung durch, wie z. B. Inline -Cache und versteckte Klassen. 3) Zu Best Practices gehören die Vermeidung globaler Variablen, die Optimierung von Schleifen, die Verwendung von const und lass und die Vermeidung übermäßiger Verwendung von Schließungen.

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Die Verschiebung von C/C zu JavaScript erfordert die Anpassung an dynamische Typisierung, Müllsammlung und asynchrone Programmierung. 1) C/C ist eine statisch typisierte Sprache, die eine manuelle Speicherverwaltung erfordert, während JavaScript dynamisch eingegeben und die Müllsammlung automatisch verarbeitet wird. 2) C/C muss in den Maschinencode kompiliert werden, während JavaScript eine interpretierte Sprache ist. 3) JavaScript führt Konzepte wie Verschlüsse, Prototypketten und Versprechen ein, die die Flexibilität und asynchrone Programmierfunktionen verbessern.

Unterschiedliche JavaScript -Motoren haben unterschiedliche Auswirkungen beim Analysieren und Ausführen von JavaScript -Code, da sich die Implementierungsprinzipien und Optimierungsstrategien jeder Engine unterscheiden. 1. Lexikalanalyse: Quellcode in die lexikalische Einheit umwandeln. 2. Grammatikanalyse: Erzeugen Sie einen abstrakten Syntaxbaum. 3. Optimierung und Kompilierung: Generieren Sie den Maschinencode über den JIT -Compiler. 4. Führen Sie aus: Führen Sie den Maschinencode aus. V8 Engine optimiert durch sofortige Kompilierung und versteckte Klasse.

Zu den Anwendungen von JavaScript in der realen Welt gehören die serverseitige Programmierung, die Entwicklung mobiler Anwendungen und das Internet der Dinge. Die serverseitige Programmierung wird über node.js realisiert, die für die hohe gleichzeitige Anfrageverarbeitung geeignet sind. 2. Die Entwicklung der mobilen Anwendungen erfolgt durch reaktnative und unterstützt die plattformübergreifende Bereitstellung. 3.. Wird für die Steuerung von IoT-Geräten über die Johnny-Five-Bibliothek verwendet, geeignet für Hardware-Interaktion.

Ich habe eine funktionale SaaS-Anwendung mit mehreren Mandanten (eine EdTech-App) mit Ihrem täglichen Tech-Tool erstellt und Sie können dasselbe tun. Was ist eine SaaS-Anwendung mit mehreren Mietern? Mit Multi-Tenant-SaaS-Anwendungen können Sie mehrere Kunden aus einem Sing bedienen

Dieser Artikel zeigt die Frontend -Integration mit einem Backend, das durch die Genehmigung gesichert ist und eine funktionale edtech SaaS -Anwendung unter Verwendung von Next.js. erstellt. Die Frontend erfasst Benutzerberechtigungen zur Steuerung der UI-Sichtbarkeit und stellt sicher, dass API-Anfragen die Rollenbasis einhalten


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Dreamweaver CS6
Visuelle Webentwicklungstools

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft