suchen
HeimBackend-EntwicklungPython-TutorialWie lassen sich Pandas-Datenrahmen basierend auf Wertebereich und Kennung effizient zusammenführen?

How to Efficiently Merge Pandas Dataframes Based on Value Range and Identifier?

Pandas-Datenrahmen basierend auf Wertebereich und Bezeichner zusammenführen

In Pandas kann das Zusammenführen von Datenrahmen mithilfe einer bereichsbasierten Bedingung und eines Bezeichners erreicht werden durch eine Kombination aus Zusammenführungs- und Filtervorgängen. Dieser Ansatz kann jedoch bei der Arbeit mit großen Datensätzen ineffizient sein. Ein alternativer Ansatz, der SQL nutzt, könnte eine bessere Leistung bieten.

Betrachten wir ein Beispiel, in dem wir zwei Datenrahmen haben, A und B. Datenrahmen A enthält ein Datum (fdate) und eine Kennung (cusip), während Datenrahmen B Folgendes enthält Datumsangaben (namedt und nameenddt) und der gleiche Bezeichner (ncusip). Unser Ziel ist es, diese Datenrahmen zusammenzuführen, bei denen das fdate in A in den durch „namedt“ und „nameenddt“ in B definierten Datumsbereich fällt.

Der folgende Python-Code demonstriert den traditionellen Pandas-Ansatz:

<code class="python">df = pd.merge(A, B, how='inner', left_on='cusip', right_on='ncusip')
df = df[(df['fdate']>=df['namedt']) & (df['fdate']<p> Obwohl dieser Ansatz funktioniert, umfasst er das bedingungslose Zusammenführen der Datenrahmen und das anschließende Filtern basierend auf der Datumsbedingung, was bei großen Datensätzen rechenintensiv sein kann.</p>
<p>Ein alternativer Ansatz ist die Verwendung einer SQL-Abfrage:</p>
<pre class="brush:php;toolbar:false"><code class="python">import pandas as pd
import sqlite3

# Create a temporary database in memory
conn = sqlite3.connect(':memory:')

# Write the dataframes to tables
A.to_sql('table_a', conn, index=False)
B.to_sql('table_b', conn, index=False)

# Construct the SQL query
query = '''
    SELECT *
    FROM table_a
    JOIN table_b ON table_a.cusip = table_b.ncusip
    WHERE table_a.fdate BETWEEN table_b.namedt AND table_b.nameenddt
'''

# Execute the query and create a Pandas dataframe
df = pd.read_sql_query(query, conn)</code>

Dieser Ansatz hat mehrere Vorteile:

  • Schnellere Ausführung: SQL ist für die Datenverarbeitung optimiert, wodurch es für die bereichsbasierte Filterung effizienter ist.
  • Vermeidet Zwischendaten: Die gefilterten Daten werden direkt extrahiert, ohne dass ein großer Zwischendatenrahmen erstellt wird.
  • Einfachheit: Die Abfrage ist prägnant und leicht zu verstehen.

Zusammenfassend lässt sich sagen, dass die Nutzung von SQL zum Zusammenführen von Datenrahmen basierend auf bereichsbasierten Bedingungen und Bezeichnern Leistungsvorteile gegenüber herkömmlichen Pandas-Operationen bietet, insbesondere bei größeren Datensätzen.

Das obige ist der detaillierte Inhalt vonWie lassen sich Pandas-Datenrahmen basierend auf Wertebereich und Kennung effizient zusammenführen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu findenSo verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu findenMar 05, 2025 am 09:58 AM

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

So herunterladen Sie Dateien in PythonSo herunterladen Sie Dateien in PythonMar 01, 2025 am 10:03 AM

Python bietet eine Vielzahl von Möglichkeiten zum Herunterladen von Dateien aus dem Internet, die über HTTP über das Urllib -Paket oder die Anforderungsbibliothek heruntergeladen werden können. In diesem Tutorial wird erläutert, wie Sie diese Bibliotheken verwenden, um Dateien von URLs von Python herunterzuladen. Anfragen Bibliothek Anfragen ist eine der beliebtesten Bibliotheken in Python. Es ermöglicht das Senden von HTTP/1.1 -Anfragen, ohne die URLs oder die Formulierung von Postdaten manuell hinzuzufügen. Die Anforderungsbibliothek kann viele Funktionen ausführen, einschließlich: Formulardaten hinzufügen Fügen Sie mehrteilige Datei hinzu Greifen Sie auf Python -Antwortdaten zu Eine Anfrage stellen Kopf

Bildfilterung in PythonBildfilterung in PythonMar 03, 2025 am 09:44 AM

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Mar 10, 2025 pm 06:54 PM

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Wie man mit PDF -Dokumenten mit Python arbeitetWie man mit PDF -Dokumenten mit Python arbeitetMar 02, 2025 am 09:54 AM

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Wie kann man mit Redis in Django -Anwendungen zwischenstrichenWie kann man mit Redis in Django -Anwendungen zwischenstrichenMar 02, 2025 am 10:10 AM

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Einführung des natürlichen Sprach -Toolkits (NLTK)Einführung des natürlichen Sprach -Toolkits (NLTK)Mar 01, 2025 am 10:05 AM

Die natürliche Sprachverarbeitung (NLP) ist die automatische oder semi-automatische Verarbeitung der menschlichen Sprache. NLP ist eng mit der Linguistik verwandt und hat Verbindungen zur Forschung in kognitiven Wissenschaft, Psychologie, Physiologie und Mathematik. In der Informatik

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Mar 10, 2025 pm 06:52 PM

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools