suchen
HeimBackend-EntwicklungPython-TutorialWas ist der Unterschied zwischen „list.__iadd__' und „list.__add__' und warum führt er zu unterschiedlichen Ergebnissen beim Ändern von Listen in Python?

What is the difference between `list.__iadd__` and `list.__add__` and why does it lead to different results when modifying lists in Python?

Die Unterschiede zwischen list.__iadd__ und list.__add__ verstehen

In Python können Objekte spezielle „magische“ Methoden definieren, um ihre Interaktion zu unterstützen mit bestimmten Betreibern. Zwei dieser Methoden sind iadd und __add__, die für direkte bzw. reguläre Additionsvorgänge verwendet werden.

Bedenken Sie die folgenden zwei Codeausschnitte:

<code class="python"># Example 1
x = y = [1, 2, 3, 4]
x += [4]
print(x)  # [1, 2, 3, 4, 4]
print(y)  # [1, 2, 3, 4, 4]

# Example 2
x = y = [1, 2, 3, 4]
x = x + [4]
print(x)  # [1, 2, 3, 4, 4]
print(y)  # [1, 2, 3, 4]</code>

Warum? Verhalten sich diese beiden Beispiele unterschiedlich?

In beiden Fällen beginnen wir mit zwei identischen Listen, x und y, und führen eine Additionsoperation mit entweder x = [4] oder x = x [4] durch.

Bei Verwendung von x = [4] wird die __iadd__-Methode von Python aufgerufen, die eine In-Place-Addition durchführt. Dies bedeutet, dass die ursprüngliche Liste x verändert wird und ihr Inhalt mit den Elementen in der Liste aktualisiert wird [4]. Infolgedessen enthalten sowohl x als auch y jetzt dieselbe geänderte Liste.

Im Gegensatz dazu wird bei Verwendung von x = x [4] die __add__-Methode von Python aufgerufen, die eine neue Liste zurückgibt, die die Elemente von beiden x enthält und [4]. Die ursprüngliche Liste x bleibt unverändert und y verweist weiterhin auf die ursprüngliche unveränderte Liste.

Das obige ist der detaillierte Inhalt vonWas ist der Unterschied zwischen „list.__iadd__' und „list.__add__' und warum führt er zu unterschiedlichen Ergebnissen beim Ändern von Listen in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Was sind einige häufige Gründe, warum ein Python -Skript möglicherweise nicht auf Unix ausgeführt wird?Was sind einige häufige Gründe, warum ein Python -Skript möglicherweise nicht auf Unix ausgeführt wird?Apr 28, 2025 am 12:18 AM

Die Gründe, warum Python -Skripte auf UNIX -Systemen nicht ausgeführt werden können, sind: 1) unzureichende Berechtigungen unter Verwendung von chmod xyour_script.py zur Erteilung von Ausführungsberechtigungen; 2) Falsche oder fehlende Shebang -Linie, Sie sollten #!/Usr/bin/envpython verwenden; 3) In falsche Einstellungen für die Umgebungsvariablen können Sie os.Environ -Debugging drucken. 4) Mit der falschen Python -Version können Sie die Version in der Shebang -Zeile oder der Befehlszeile angeben. 5) Abhängigkeitsprobleme unter Verwendung der virtuellen Umgebung, um Abhängigkeiten zu isolieren; 6) Syntaxfehler, verwenden Sie Python-Mpy_CompileYour_Script.py, um zu erkennen.

Geben Sie ein Beispiel für ein Szenario an, in dem die Verwendung eines Python -Arrays angemessener wäre als die Verwendung einer Liste.Geben Sie ein Beispiel für ein Szenario an, in dem die Verwendung eines Python -Arrays angemessener wäre als die Verwendung einer Liste.Apr 28, 2025 am 12:15 AM

Die Verwendung von Python -Arrays eignet sich besser für die Verarbeitung großer Mengen von numerischen Daten als für Listen. 1) Arrays speichern mehr Speicher, 2) Arrays sind schneller nach numerischen Werten, 3) Konsistenz vom Arrays Kraftstyp, 4) Arrays sind mit C -Arrays kompatibel, sind jedoch nicht so flexibel und bequem wie Listen.

Was sind die Auswirkungen der Leistung bei der Verwendung von Listen im Vergleich zu Arrays in Python?Was sind die Auswirkungen der Leistung bei der Verwendung von Listen im Vergleich zu Arrays in Python?Apr 28, 2025 am 12:10 AM

Listen besser voreflexibilität undmixdatatatypen, während Datensätze der überlegenen sumerischen Berechnungen sandlastete

Wie handelt es sich bei Numpy um die Speicherverwaltung für große Arrays?Wie handelt es sich bei Numpy um die Speicherverwaltung für große Arrays?Apr 28, 2025 am 12:07 AM

NumpymanageMemoryforlargearrayseffictionlyusingViews, Kopien und Memory-Made.1) ViewsAllowsLicing Mit Outcopying, direktModifizierende Theoriginalarray.2) CopieScanbecreated withthecopy () methodeChoperingdata.3) Memory-Maddscanbeed-medellessive-made-mapedFileshandleshandLessive-massessive-massessiva

Was erfordert das Importieren eines Moduls: Listen oder Arrays?Was erfordert das Importieren eines Moduls: Listen oder Arrays?Apr 28, 2025 am 12:06 AM

ListsinpythondonotRequireMportingamodule, whilearRays aus der FROMTHEARRAYMODULEDONEDANIMIMPORT.1) listet zur Verfügung gestellt.

Welche Datentypen können in einem Python -Array gespeichert werden?Welche Datentypen können in einem Python -Array gespeichert werden?Apr 27, 2025 am 12:11 AM

PythonlistscanstoreanyDatatype, ArrayModulearraysStoreOnetype und NumpyarraysarefornumericalComputations.1) listet dieArversatile-memory-effizient.2) Arraymodulenarraysalememory-effizientforhomogeneData.3) Numpharraysareoptional-EffictionhomogenInData.3) nummodulenarraysoptionalinformanceIntata.3) nummodulearraysoptionalinformanceIntata.3) NumpharraysareoPresopplowancalinScesDataa.3) NumpharraysoePerformance

Was passiert, wenn Sie versuchen, einen Wert des falschen Datentyps in einem Python -Array zu speichern?Was passiert, wenn Sie versuchen, einen Wert des falschen Datentyps in einem Python -Array zu speichern?Apr 27, 2025 am 12:10 AM

Wenn SietostoreavalueOfThewrongdatatypeinapythonarray, touencounteratypeerror.Thissisdustuetothearraymodules -SstrictTypeNeen -Forcortion, welche

Welches ist Teil der Python Standard Library: Listen oder Arrays?Welches ist Teil der Python Standard Library: Listen oder Arrays?Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor