


Effizientes String-Matching in Apache Spark: Methoden und Implementierung
Übersicht
Das Abgleichen von Strings ist eine grundlegende Aufgabe in der Datenverarbeitung, kann jedoch zu einer Herausforderung werden beim Umgang mit großen Datensätzen in Apache Spark. In diesem Artikel werden effiziente Algorithmen für den String-Abgleich in Spark untersucht und häufige Probleme wie Zeichenersetzungen, fehlende Leerzeichen und Emoji-Extraktion behandelt.
String-Matching-Algorithmus
Obwohl Apache Spark möglicherweise nicht die ideale Plattform dafür ist Beim String-Matching bietet es mehrere Techniken zum Ausführen dieser Aufgabe:
- Tokenisierung: RegexTokenizer oder Split können Zeichenfolgen in Token (Zeichen oder Wörter) aufteilen.
- NGram: NGram erstellt Sequenzen (n-Gramm) von Token und erfasst Zeichenkombinationen.
- Vektorisierung: HashingTF oder CountVectorizer wandelt Token oder n-Gramm zum Vergleich in vektorisierte Darstellungen um .
- LSH (Locality-Sensitive Hashing): MinHashLSH ist ein Hashing-Algorithmus, der effizient ungefähre nächste Nachbarn finden kann.
Implementierung
So passen Sie Zeichenfolgen mit diesen Techniken in Spark an:
- Erstellen Sie eine Pipeline:Kombinieren Sie die genannten Transformatoren in einer Pipeline.
- Passen Sie das Modell an:Trainieren Sie das Modell anhand des Datensatzes, der die richtigen Zeichenfolgen enthält.
- Daten transformieren:Konvertieren Sie sowohl den extrahierten Text als auch den Datensatz in vektorisierte Darstellungen.
- Verbinden und Ausgabe:Verwenden Sie Join-Operationen, um ähnliche Zeichenfolgen anhand ihres Abstands zu identifizieren.
Beispielcode
<code class="scala">import org.apache.spark.ml.feature.{RegexTokenizer, NGram, Vectorizer, MinHashLSH} import org.apache.spark.ml.Pipeline val pipeline = new Pipeline().setStages(Array( new RegexTokenizer(), new NGram(), new Vectorizer(), new MinHashLSH() )) val model = pipeline.fit(db) val dbHashed = model.transform(db) val queryHashed = model.transform(query) model.stages.last.asInstanceOf[MinHashLSHModel].approxSimilarityJoin(dbHashed, queryHashed).show</code>
Verwandte Lösungen
- Spark optimieren Job zum Berechnen der Eintragsähnlichkeit und zum Finden der Top-N-ähnlichen Elemente
- [Spark ML Text Processing Tutorial](https://spark.apache.org/docs/latest/ml-text.html)
- [Spark ML Feature Transformers](https://spark.apache.org/docs/latest/ml-features.html#transformers)
Das obige ist der detaillierte Inhalt vonWie können Sie in Apache Spark effizient einen String-Abgleich für große Datenmengen durchführen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.

Python eignet sich für eine schnelle Entwicklung und Datenverarbeitung, während C für hohe Leistung und zugrunde liegende Kontrolle geeignet ist. 1) Python ist einfach zu bedienen, mit prägnanter Syntax, und eignet sich für Datenwissenschaft und Webentwicklung. 2) C hat eine hohe Leistung und eine genaue Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

Die Zeit, die zum Erlernen von Python erforderlich ist, variiert von Person zu Person, hauptsächlich von früheren Programmiererfahrungen, Lernmotivation, Lernressourcen und -methoden und Lernrhythmus. Setzen Sie realistische Lernziele und lernen Sie durch praktische Projekte am besten.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Dreamweaver CS6
Visuelle Webentwicklungstools