suchen
HeimBackend-EntwicklungPython-TutorialKönnen Python-Typanmerkungen Homogenität in Sammlungen erzwingen?

 Can Python Type Annotations Enforce Homogeneity in Collections?

Typhinweise für homogene Sammlungen

Typanmerkungen von Python 3 bieten eine praktische Möglichkeit, den erwarteten Typ der Argumente einer Funktion anzugeben. Es ist jedoch nicht sofort klar, ob diese Annotationen auf Sammlungen angewendet werden können, um die Homogenität innerhalb ihrer Elemente zu erzwingen.

Anfängliche Unfähigkeit von Funktionsanmerkungen

Stand August 2014: Die Funktionsanmerkungen von Python unterstützten keine Typhinweise für Elemente in Sammlungen. Dies bedeutete, dass Pseudocode wie das folgende Beispiel ungültig war:

<code class="python">def my_func(l: list<int>):
    pass</int></code>

Stattdessen waren formatierte Dokumentzeichenfolgen die empfohlene Methode für Typhinweise innerhalb von Sammlungen:

<code class="python">def my_func(l):
    """
    :type l: list[int]
    """
    pass</code>

Einführung von Typhinweisen für Sammlungen

Mit der Einführung von PEP 484 führte Python 3.5 die vollständige Unterstützung für Typanmerkungen ein, einschließlich der Möglichkeit, Typen innerhalb von Sammlungen anzugeben. Das neue Typisierungsmodul ermöglichte die explizite Deklaration von Sammlungstypen:

<code class="python">from typing import List

def do_something(l: List[str]):
    for s in l:
        s  # str</code>

Diese Verbesserung ermöglichte es IDEs wie PyCharm, eine genaue automatische Vervollständigung und Typprüfung für Sammlungen bereitzustellen.

Fazit

Während Python 3 anfangs keine Unterstützung für Typhinweise innerhalb von Sammlungen bot, ist es mit der Einführung von PEP 484 und dem Typisierungsmodul ein Kinderspiel geworden, Homogenität in Sammlungen zu spezifizieren und durchzusetzen. Diese Erweiterung hat die Typensicherheit und die Entwicklungserfahrung für Python-Programmierer erheblich verbessert.

Das obige ist der detaillierte Inhalt vonKönnen Python-Typanmerkungen Homogenität in Sammlungen erzwingen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python vs. C: Anwendungen und Anwendungsfälle verglichenPython vs. C: Anwendungen und Anwendungsfälle verglichenApr 12, 2025 am 12:01 AM

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Der 2-stündige Python-Plan: ein realistischer AnsatzDer 2-stündige Python-Plan: ein realistischer AnsatzApr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python: Erforschen der primären AnwendungenPython: Erforschen der primären AnwendungenApr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Wie viel Python können Sie in 2 Stunden lernen?Wie viel Python können Sie in 2 Stunden lernen?Apr 09, 2025 pm 04:33 PM

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden?Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden?Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet?Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet?Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Was soll ich tun, wenn das Modul '__builtin__' beim Laden der Gurkendatei in Python 3.6 nicht gefunden wird?Was soll ich tun, wenn das Modul '__builtin__' beim Laden der Gurkendatei in Python 3.6 nicht gefunden wird?Apr 02, 2025 am 07:12 AM

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie verbessert man die Genauigkeit der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse?Wie verbessert man die Genauigkeit der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse?Apr 02, 2025 am 07:09 AM

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung