suchen
HeimBackend-EntwicklungPython-TutorialWie kann die Multiprocessing-Bibliothek von Python die Interprozesskommunikation vereinfachen?

How can Python's multiprocessing library simplify Interprocess Communication?

Interprozesskommunikation in Python

Interprozesskommunikation (IPC) ermöglicht die Kommunikation zwischen mehreren laufenden Python-Prozessen. Das Ausprobieren verschiedener Optionen, beispielsweise der Verwendung benannter Pipes, Dbus-Dienste und Sockets, kann eine Herausforderung sein. Dieser Artikel stellt eine übergeordnete und robuste Lösung unter Verwendung der Multiprocessing-Bibliothek vor.

Verwendung der Multiprocessing-Bibliothek

Die Multiprocessing-Bibliothek bietet eine bequeme und effiziente Möglichkeit, IPC in Python zu implementieren. Es stellt Listener und Clients bereit, die Sockets kapseln und Ihnen den direkten Austausch von Python-Objekten ermöglichen.

Auf Nachrichten warten

Um einen Abhörprozess zu erstellen, verwenden Sie die Listener-Klasse:

<code class="python">from multiprocessing.connection import Listener

address = ('localhost', 6000)
listener = Listener(address, authkey=b'secret password')
conn = listener.accept()
print('connection accepted from', listener.last_accepted)</code>

Der Listener wartet auf einer angegebenen IP-Adresse und einem angegebenen Port auf eingehende Verbindungen. Sobald eine Verbindung hergestellt ist, wird ein Verbindungsobjekt (conn) zurückgegeben.

Nachrichten senden

Um Nachrichten als Python-Objekte zu senden, verwenden Sie die Client-Klasse:

<code class="python">from multiprocessing.connection import Client

address = ('localhost', 6000)
conn = Client(address, authkey=b'secret password')
conn.send('close')
conn.close()</code>

Die Client-Klasse stellt eine Verbindung zur angegebenen Adresse her und kann beliebige Objekte an den Abhörprozess senden.

Beispielimplementierung

Stellen Sie sich einen einfachen Anwendungsfall vor, bei dem ein Prozess (listener.py) auf Nachrichten lauscht und die other (client.py) sendet eine Nachricht.

listener.py:

<code class="python">from multiprocessing.connection import Listener

listener = Listener(('localhost', 6000), authkey=b'secret password')
conn = listener.accept()

message = conn.recv()
if message == 'close':
    conn.close()
    listener.close()
    exit(0)
else:
    conn.close()
    listener.close()
    exit(1)</code>

client.py:

<code class="python">from multiprocessing.connection import Client

conn = Client(('localhost', 6000), authkey=b'secret password')
conn.send('close')
conn.close()</code>

Wenn Sie listener.py und dann client.py ausführen, empfängt der Listener-Prozess die Nachricht und wird mit dem Rückkehrcode 0 beendet, was den Erfolg anzeigt. Wenn eine ungültige Nachricht gesendet wird, wird der Listener mit einem Rückkehrcode ungleich Null beendet, was auf einen Fehler hinweist.

Dieses Beispiel zeigt die Einfachheit und Flexibilität der Verwendung der Multiprocessing-Bibliothek für die Interprozesskommunikation in Python. Es bietet eine Abstraktion auf höherer Ebene über Sockets und ermöglicht Ihnen das nahtlose Senden und Empfangen von Python-Objekten zwischen Prozessen.

Das obige ist der detaillierte Inhalt vonWie kann die Multiprocessing-Bibliothek von Python die Interprozesskommunikation vereinfachen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Was sind einige häufige Gründe, warum ein Python -Skript möglicherweise nicht auf Unix ausgeführt wird?Was sind einige häufige Gründe, warum ein Python -Skript möglicherweise nicht auf Unix ausgeführt wird?Apr 28, 2025 am 12:18 AM

Die Gründe, warum Python -Skripte auf UNIX -Systemen nicht ausgeführt werden können, sind: 1) unzureichende Berechtigungen unter Verwendung von chmod xyour_script.py zur Erteilung von Ausführungsberechtigungen; 2) Falsche oder fehlende Shebang -Linie, Sie sollten #!/Usr/bin/envpython verwenden; 3) In falsche Einstellungen für die Umgebungsvariablen können Sie os.Environ -Debugging drucken. 4) Mit der falschen Python -Version können Sie die Version in der Shebang -Zeile oder der Befehlszeile angeben. 5) Abhängigkeitsprobleme unter Verwendung der virtuellen Umgebung, um Abhängigkeiten zu isolieren; 6) Syntaxfehler, verwenden Sie Python-Mpy_CompileYour_Script.py, um zu erkennen.

Geben Sie ein Beispiel für ein Szenario an, in dem die Verwendung eines Python -Arrays angemessener wäre als die Verwendung einer Liste.Geben Sie ein Beispiel für ein Szenario an, in dem die Verwendung eines Python -Arrays angemessener wäre als die Verwendung einer Liste.Apr 28, 2025 am 12:15 AM

Die Verwendung von Python -Arrays eignet sich besser für die Verarbeitung großer Mengen von numerischen Daten als für Listen. 1) Arrays speichern mehr Speicher, 2) Arrays sind schneller nach numerischen Werten, 3) Konsistenz vom Arrays Kraftstyp, 4) Arrays sind mit C -Arrays kompatibel, sind jedoch nicht so flexibel und bequem wie Listen.

Was sind die Auswirkungen der Leistung bei der Verwendung von Listen im Vergleich zu Arrays in Python?Was sind die Auswirkungen der Leistung bei der Verwendung von Listen im Vergleich zu Arrays in Python?Apr 28, 2025 am 12:10 AM

Listen besser voreflexibilität undmixdatatatypen, während Datensätze der überlegenen sumerischen Berechnungen sandlastete

Wie handelt es sich bei Numpy um die Speicherverwaltung für große Arrays?Wie handelt es sich bei Numpy um die Speicherverwaltung für große Arrays?Apr 28, 2025 am 12:07 AM

NumpymanageMemoryforlargearrayseffictionlyusingViews, Kopien und Memory-Made.1) ViewsAllowsLicing Mit Outcopying, direktModifizierende Theoriginalarray.2) CopieScanbecreated withthecopy () methodeChoperingdata.3) Memory-Maddscanbeed-medellessive-made-mapedFileshandleshandLessive-massessive-massessiva

Was erfordert das Importieren eines Moduls: Listen oder Arrays?Was erfordert das Importieren eines Moduls: Listen oder Arrays?Apr 28, 2025 am 12:06 AM

ListsinpythondonotRequireMportingamodule, whilearRays aus der FROMTHEARRAYMODULEDONEDANIMIMPORT.1) listet zur Verfügung gestellt.

Welche Datentypen können in einem Python -Array gespeichert werden?Welche Datentypen können in einem Python -Array gespeichert werden?Apr 27, 2025 am 12:11 AM

PythonlistscanstoreanyDatatype, ArrayModulearraysStoreOnetype und NumpyarraysarefornumericalComputations.1) listet dieArversatile-memory-effizient.2) Arraymodulenarraysalememory-effizientforhomogeneData.3) Numpharraysareoptional-EffictionhomogenInData.3) nummodulenarraysoptionalinformanceIntata.3) nummodulearraysoptionalinformanceIntata.3) NumpharraysareoPresopplowancalinScesDataa.3) NumpharraysoePerformance

Was passiert, wenn Sie versuchen, einen Wert des falschen Datentyps in einem Python -Array zu speichern?Was passiert, wenn Sie versuchen, einen Wert des falschen Datentyps in einem Python -Array zu speichern?Apr 27, 2025 am 12:10 AM

Wenn SietostoreavalueOfThewrongdatatypeinapythonarray, touencounteratypeerror.Thissisdustuetothearraymodules -SstrictTypeNeen -Forcortion, welche

Welches ist Teil der Python Standard Library: Listen oder Arrays?Welches ist Teil der Python Standard Library: Listen oder Arrays?Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools