


Warum können Array-Größen nicht mit „const int'-Variablen in C initialisiert werden?
Warum wird die Array-Größenbeschränkung mit Const Int manchmal erzwungen?
In C können Array-Größen mithilfe konstanter Ganzzahlen angegeben werden. Diese Flexibilität weist jedoch Einschränkungen auf, wie die folgenden Beispiele zeigen:
<code class="cpp">const int size = 2; int array[size] = {0}; // Allowed</code>
<code class="cpp">int a = 2; const int size = a; int array[size] = {0}; // Compile Error</code>
Warum wird das erste Beispiel erfolgreich kompiliert, während das zweite fehlschlägt?
Erklärung
Der C-Standard schreibt diese Array-Größenbeschränkungen basierend auf der Art des Ausdrucks vor, der zum Initialisieren der Größe verwendet wird.
Konstanter Ausdruck
Im ersten Beispiel ist const int size = 2; ist ein konstanter Ausdruck, da der Wert der Größe zum Zeitpunkt der Kompilierung bekannt ist. Da der Compiler die Array-Größe kennt, kann er beim Kompilieren den notwendigen Speicher zuweisen.
Nichtkonstanter Ausdruck
Im zweiten Beispiel ist const int size = a; ist kein konstanter Ausdruck, da der Wert von a erst zur Laufzeit bestimmt wird. Dies verhindert, dass der Compiler die Array-Größe während der Kompilierung kennt, wodurch es unmöglich wird, zur Kompilierungszeit Speicher zuzuweisen.
Unveränderlichkeit ist irrelevant
Beachten Sie, dass das zweite Beispiel immer noch einen effektiv konstanten Wert für die Größe hat , aber dies wird vom Compiler nicht berücksichtigt. Die Regeln konzentrieren sich auf die Art des verwendeten Ausdrucks und int a = 2; verwendet veränderliche Variablen, was ihn zu einem nicht konstanten Ausdruck macht.
Komplexität der Flussanalyse
Um die Laufzeitinitialisierung für die Zuweisung zur Kompilierungszeit zu ermöglichen, wäre eine Flussanalyse erforderlich. Der Compiler müsste zwischen Ausdrücken wie:
<code class="cpp">int a = 2; const int size = a;</code>
und
<code class="cpp">int a = foo(); const int size = a;</code>
unterscheiden, wobei der Größenausdruck identisch ist, der tatsächliche Wert jedoch vom Laufzeitverhalten abhängt. Diese Komplexität wird vom C-Komitee als unnötig erachtet.
Das obige ist der detaillierte Inhalt vonWarum können Array-Größen nicht mit „const int'-Variablen in C initialisiert werden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

C# eignet sich für Projekte, die eine hohe Entwicklungseffizienz und plattformübergreifende Unterstützung erfordern, während C für Anwendungen geeignet ist, die eine hohe Leistung und die zugrunde liegende Kontrolle erfordern. 1) C# vereinfacht die Entwicklung, bietet Müllsammlung und reichhaltige Klassenbibliotheken, die für Anwendungen auf Unternehmensebene geeignet sind. 2) C ermöglicht den direkten Speicherbetrieb, der für Spielentwicklung und Hochleistungs-Computing geeignet ist.

C Gründe für die kontinuierliche Verwendung sind seine hohe Leistung, breite Anwendung und sich weiterentwickelnde Eigenschaften. 1) Leistung mit hoher Effizienz. 2) weit verbreitete: Glanz in den Feldern der Spieleentwicklung, eingebettete Systeme usw. 3) Kontinuierliche Entwicklung: Seit seiner Veröffentlichung im Jahr 1983 hat C weiterhin neue Funktionen hinzugefügt, um seine Wettbewerbsfähigkeit aufrechtzuerhalten.

Die zukünftigen Entwicklungstrends von C und XML sind: 1) C werden neue Funktionen wie Module, Konzepte und Coroutinen in den Standards C 20 und C 23 einführen, um die Programmierungseffizienz und -sicherheit zu verbessern. 2) XML nimmt weiterhin eine wichtige Position in den Datenaustausch- und Konfigurationsdateien ein, steht jedoch vor den Herausforderungen von JSON und YAML und entwickelt sich in einer prägnanteren und einfacheren Analyse wie die Verbesserungen von XMLSchema1.1 und XPATH3.1.

Das moderne C -Designmodell verwendet neue Funktionen von C 11 und darüber hinaus, um flexiblere und effizientere Software aufzubauen. 1) Verwenden Sie Lambda -Ausdrücke und STD :: Funktion, um das Beobachtermuster zu vereinfachen. 2) Die Leistung durch mobile Semantik und perfekte Weiterleitung optimieren. 3) Intelligente Zeiger gewährleisten die Sicherheit und das Management von Ressourcen.

C Die Kernkonzepte von Multithreading und gleichzeitiger Programmierung umfassen Thread -Erstellung und -management, Synchronisation und gegenseitige Ausschluss, bedingte Variablen, Thread -Pooling, asynchrones Programmieren, gemeinsame Fehler und Debugging -Techniken sowie Leistungsoptimierung sowie Best Practices. 1) Erstellen Sie Threads mit der STD :: Thread -Klasse. Das Beispiel zeigt, wie der Thread erstellt und wartet. 2) Synchronisieren und gegenseitige Ausschluss, um std :: mutex und std :: lock_guard zu verwenden, um gemeinsam genutzte Ressourcen zu schützen und den Datenwettbewerb zu vermeiden. 3) Zustandsvariablen realisieren Kommunikation und Synchronisation zwischen Threads über std :: Condition_Variable. 4) Das Beispiel des Thread -Pools zeigt, wie die Threadpool -Klasse verwendet wird, um Aufgaben parallel zu verarbeiten, um die Effizienz zu verbessern. 5) Asynchrones Programmieren verwendet std :: als

Die Speicherverwaltung, Hinweise und Vorlagen von C sind Kernfunktionen. 1. Die Speicherverwaltung zuteilt manuell manuell und freisetzt Speicher durch neue und löscht und achten Sie auf den Unterschied zwischen Haufen und Stapel. 2. Zeiger erlauben den direkten Betrieb von Speicheradressen und verwenden Sie sie mit Vorsicht. Intelligente Zeiger können das Management vereinfachen. 3. Template implementiert die generische Programmierung, verbessert die Wiederverwendbarkeit und Flexibilität der Code und muss die Typableitung und Spezialisierung verstehen.

C eignet sich für die Systemprogrammierung und Hardware-Interaktion, da es Steuerfunktionen in der Nähe von Hardware und leistungsstarke Funktionen der objektorientierten Programmierung bietet. 1) C über Merkmale auf niedrigem Niveau wie Zeiger, Speicherverwaltung und Bitbetrieb können effizienter Betrieb auf Systemebene erreicht werden. 2) Die Hardware -Interaktion wird über Geräte -Treiber implementiert, und C kann diese Treiber so schreiben, dass sie mit Hardware -Geräten über die Kommunikation umgehen.

C eignet sich zum Aufbau von Hochleistungsspiel- und Simulationssystemen, da es nahezu Hardwaresteuerung und effiziente Leistung bietet. 1) Speicherverwaltung: Manuelle Steuerung reduziert die Fragmentierung und verbessert die Leistung. 2) Kompilierungszeitoptimierung: Inline-Funktionen und Schleifenerweiterung verbessern die Laufgeschwindigkeit. 3) Niedrige Operationen: Direkter Zugriff auf Hardware, Optimierung von Grafiken und physischem Computer.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

Dreamweaver CS6
Visuelle Webentwicklungstools

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.