


Wie wähle ich Zeilen mit dem Mindestwert in einer bestimmten Spalte nach GroupBy in Pandas aus?
Pandas GroupBy und Auswählen von Zeilen mit Mindestwert in einer bestimmten Spalte
Bei der Arbeit mit Pandas DataFrames ist es oft notwendig, Daten nach bestimmten Spalten zu gruppieren und Operationen an diesen durchzuführen Gruppen. Ein häufiger Vorgang ist das Auswählen von Zeilen mit dem Mindestwert in einer bestimmten Spalte.
In diesem Artikel untersuchen wir einen einfachen und effizienten Ansatz, um diese Aufgabe zu lösen, ohne auf MultiIndex zurückzugreifen.
Problemstellung:
Angesichts eines DataFrame mit den Spalten A, B und C besteht unser Ziel darin, für jeden Wert in Spalte A die Zeile mit dem Mindestwert in Spalte B auszuwählen.
Original DataFrame:
A | B | C |
---|---|---|
1 | 4 | 3 |
1 | 5 | 4 |
1 | 2 | 10 |
2 | 7 | 2 |
2 | 4 | 4 |
2 | 6 | 6 |
Gewünschte Ausgabe:
A | B | C |
---|---|---|
1 | 2 | 10 |
2 | 4 | 4 |
Lösung:
Der Schlüssel zur Lösung dieses Problems liegt in der idxmin()-Methode von Pandas. Diese Methode gibt den Index der Zeile mit dem Mindestwert in einer angegebenen Spalte für jede Gruppe zurück.
Mit groupby() und idxmin() können wir die gewünschten Zeilen direkt auswählen:
<code class="python"># Group the DataFrame by column 'A' grouped = df.groupby('A') # Get the index of the rows with the minimum value in column 'B' for each group min_idx = grouped.B.idxmin() # Use the index to select the desired rows result = df.loc[min_idx]</code>
Ausgabe:
A B C 2 1 2 10 4 2 4 4
Dieser Ansatz wählt effizient die Zeilen mit dem Mindestwert in Spalte B für jede Gruppe in A aus, ohne dass komplexe Datenstrukturen oder Zwischenschritte erforderlich sind.
Das obige ist der detaillierte Inhalt vonWie wähle ich Zeilen mit dem Mindestwert in einer bestimmten Spalte nach GroupBy in Pandas aus?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

ToAppendElementStoapythonList, UsTheAppend () methodForsingleElelements, Extend () FormultipleElements, und INSERSt () FORSPECIFIFICEPosition.1) UseAppend () ForaddingOneElementattheend.2) usextend () toaddmultiElementsefficction.3) useInsert () toaddanelementataspeci

TocreateApythonList, usequarebrackets [] andsparateItemswithcommas.1) ListaredynamicandcanholdmixedDatatypes.2) UseAppend (), REME () und SSLICINGFORMIPLUMILATION.3) LISTCOMPRAUMENS

In den Bereichen Finanzen, wissenschaftliche Forschung, medizinische Versorgung und KI ist es entscheidend, numerische Daten effizient zu speichern und zu verarbeiten. 1) In der Finanzierung kann die Verwendung von Speicherzuordnungsdateien und Numpy -Bibliotheken die Datenverarbeitungsgeschwindigkeit erheblich verbessern. 2) Im Bereich der wissenschaftlichen Forschung sind HDF5 -Dateien für die Datenspeicherung und -abnahme optimiert. 3) In der medizinischen Versorgung verbessern die Datenbankoptimierungstechnologien wie die Indexierung und die Partitionierung die Leistung der Datenabfrage. 4) In AI beschleunigen Daten, die Sharding und das verteilte Training beschleunigen, Modelltraining. Die Systemleistung und Skalierbarkeit können erheblich verbessert werden, indem die richtigen Tools und Technologien ausgewählt und Kompromisse zwischen Speicher- und Verarbeitungsgeschwindigkeiten abgewogen werden.

PythonarraysSureScreeatedusedhearrayModule, nicht gebaute Inlikelisten.1) ImportThearrayModule.2) Spezifizieren Sie die THETYPECODE, z.

Zusätzlich zur Shebang -Linie gibt es viele Möglichkeiten, einen Python -Interpreter anzugeben: 1. Verwenden Sie Python -Befehle direkt aus der Befehlszeile; 2. Verwenden Sie Stapeldateien oder Shell -Skripte. 3.. Verwenden Sie Build -Tools wie Make oder CMake; 4. Verwenden Sie Aufgabenläufer wie Invoke. Jede Methode hat ihre Vor- und Nachteile, und es ist wichtig, die Methode auszuwählen, die den Anforderungen des Projekts entspricht.

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Dreamweaver CS6
Visuelle Webentwicklungstools

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.
