


Verkettung von Zuweisungen und der Loc-Funktion von Pandas zum Ändern von Daten basierend auf bedingten Werten
In der Pandas-Bibliothek von Python kann der Umgang mit Datenmanipulationen eine Herausforderung darstellen diejenigen, die mit anderen Programmiertools vertraut sind. In diesem Artikel geht es um eine spezielle Abfrage bezüglich der Iteration über Pandas-Daten, um bestimmte Werte basierend auf Bedingungen zu ändern.
Problem:
Die vorliegende Aufgabe besteht darin, zwei Werte zu ändern, FirstName und LastName, innerhalb eines DataFrame basierend auf übereinstimmenden Werten in der ID-Spalte. Insbesondere wenn die ID 103 ist, sollten Vorname und Nachname durch „Matt“ bzw. „Jones“ ersetzt werden.
Lösung: Alternative Methoden
Ansatz 1: Verwenden von Slicing und Indizierung mit Loc
Um Daten basierend auf bedingten Werten in Pandas zu ändern, besteht ein effektiver Ansatz darin, die Loc-Funktion zu verwenden. Diese Funktion ermöglicht eine logische Auswertung und überschreibt Daten basierend auf festgelegten Bedingungen.
<code class="python">import pandas df = pandas.read_csv("test.csv") df.loc[df.ID == 103, 'FirstName'] = "Matt" df.loc[df.ID == 103, 'LastName'] = "Jones"</code>
Ansatz 2: Verkettete Zuweisung
Eine alternative Methode ist die verkettete Zuweisung, die eine Zuweisung beinhaltet Werte zu bestimmten Elementen in einem DataFrame basierend auf der Bedingung. Obwohl von dieser Methode aufgrund ihrer potenziellen Instabilität abgeraten wird, ist sie für das Verständnis dennoch nützlich:
<code class="python">import pandas df = pandas.read_csv("test.csv") df['FirstName'][df.ID == 103] = "Matt" df['LastName'][df.ID == 103] = "Jones"</code>
Das obige ist der detaillierte Inhalt vonWie kann ich bestimmte Werte in einem Pandas DataFrame basierend auf bedingten Werten mithilfe der Verkettungszuweisung und der Loc-Funktion ändern?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

PythonarraysSupportvariousoperationen: 1) SlicicingExtractsSubsets, 2) Anhang/Erweiterungen, 3) Einfügen von PlaceSelementsatspezifischePositionen, 4) Entfernen von Delettel, 5) Sortieren/ReversingChangesorder und 6) compredewlistenwlists basierte basierte, basierte Zonexistin

NumpyarraysaresessentialForApplicationsRequeeFoughnumericalComputations und Datamanipulation

UseanArray.ArrayoveralistinpythonwhendealingwithhomogenousData, Performance-CriticalCode, OrInterfacingwithCcode.1) HomogenousData: ArraysSavemoryWithtypedElements.2) Performance-CriticalCode: ArraySaveMoryWithtypedElements.2) Performance-CriticalCode: ArraysFerbetterPerPterPerProrMtorChorescomeChormericalcoricalomancomeChormericalicalomentorMentumscritorcorements.3) Interf

Nein, NOTALLLISTOPERATIONSARESURDEDBYARAYS UNDVICEVERSA.1) ArraysDonotsupportdynamicoperationslikeAppendorinStResizing, die impactSperformance.2) listsDonotguaranteConstantTimeComplexityfordirectAccesslikearraysDo.

ToaccesselementSinapythonlist, verwenden Indexing, Negativindexing, Slicing, Oriteration.1) IndexingStartsat0.2) NegativeIndexingAccessses aus der THEend.3) SlicingExtractSporions.4) itererationSforloopsorenumerate.AlwaySChEckLegthtoavoidIndexerror.

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor
