


Die Unterschiede zwischen den Flatten- und Ravel-Funktionen von Numpy verstehen
Bei der Arbeit mit mehrdimensionalen Arrays in NumPy kann es zu Situationen kommen, in denen eine Konvertierung erforderlich ist sie in eine eindimensionale Form. Hier kommen die Funktionen flatten() und ravel() ins Spiel. Trotz ihrer ähnlichen Ergebnisse verwenden sie jedoch unterschiedliche Methoden und haben einzigartige Auswirkungen auf die Leistung und das Speichermanagement.
Ähnlichkeiten:
Sowohl flatten() als auch ravel() erzeugen ein abgeflachtes Array, wie im bereitgestellten Codebeispiel gezeigt:
import numpy as np y = np.array(((1,2,3),(4,5,6),(7,8,9))) print(y.flatten()) [1 2 3 4 5 6 7 8 9] print(y.ravel()) [1 2 3 4 5 6 7 8 9]
Unterschiede:
- Speicherzuweisung: flatten() Erstellt immer eine Kopie des ursprünglichen Arrays, während ravel() wann immer möglich eine Ansicht des ursprünglichen Arrays erstellt. Dies bedeutet, dass die Änderung des von flatten() zurückgegebenen Arrays keine Auswirkungen auf das ursprüngliche Array hat, wohingegen Änderungen, die an dem von ravel() zurückgegebenen Array vorgenommen werden, im Original widergespiegelt werden.
- Leistung: Ravel() ist tendenziell schneller als flatten(), da es das Kopieren des Speichers vermeidet und zusammenhängende Ansichten verwendet. Dies kann beim Umgang mit großen Arrays von Vorteil sein.
- Stride Handling: reshape((-1,)) bietet eine weitere Option zum Reduzieren von Arrays, gibt jedoch eine Ansicht anstelle einer Kopie zurück flatten(). Allerdings ist die Kontiguität möglicherweise nicht gewährleistet, was sich auf die Leistung auswirken kann.
Fazit:
Das Verständnis der subtilen Nuancen zwischen flatten() und ravel() rüstet Sie aus mit dem Wissen, fundierte Entscheidungen darüber zu treffen, wann die einzelnen Funktionen eingesetzt werden sollen. Wenn die Beibehaltung des ursprünglichen Arrays von entscheidender Bedeutung ist oder Sie eine neue Kopie zur weiteren Verarbeitung erstellen müssen, ist flatten() die bevorzugte Wahl. Wenn andererseits Geschwindigkeit von entscheidender Bedeutung ist und eine Änderung des abgeflachten Arrays akzeptabel ist, bietet ravel() eine effizientere Lösung.
Das obige ist der detaillierte Inhalt von**Flatten vs. Ravel: Wann sollte ich welche NumPy-Funktion verwenden?**. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

NumpyisessentialfornumericalComputingInpythonduetoitsSpeed, GedächtnisEffizienz und kompetentiertemaMatematical-Funktionen.1) ITSFACTBECAUSPERFORMATIONSOPERATIONS.2) NumpyarraysSaremoremory-Effecthonpythonlists.3) iTofferSAgyarraysAremoremory-Effizieren

ContInuuousMemoryAllocationScrucialforAraysBecauseAltoLowsFofficy und Fastelement Access.1) iTenablesconstantTimeAccess, O (1), Duetodirectaddresscalculation.2) itimProvesefficienceByallowing -MultipleTeLementFetchesperCacheline.3) Es wird gestellt

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion
