


Die Unterschiede zwischen den Flatten- und Ravel-Funktionen von Numpy verstehen
Bei der Arbeit mit mehrdimensionalen Arrays in NumPy kann es zu Situationen kommen, in denen eine Konvertierung erforderlich ist sie in eine eindimensionale Form. Hier kommen die Funktionen flatten() und ravel() ins Spiel. Trotz ihrer ähnlichen Ergebnisse verwenden sie jedoch unterschiedliche Methoden und haben einzigartige Auswirkungen auf die Leistung und das Speichermanagement.
Ähnlichkeiten:
Sowohl flatten() als auch ravel() erzeugen ein abgeflachtes Array, wie im bereitgestellten Codebeispiel gezeigt:
import numpy as np y = np.array(((1,2,3),(4,5,6),(7,8,9))) print(y.flatten()) [1 2 3 4 5 6 7 8 9] print(y.ravel()) [1 2 3 4 5 6 7 8 9]
Unterschiede:
- Speicherzuweisung: flatten() Erstellt immer eine Kopie des ursprünglichen Arrays, während ravel() wann immer möglich eine Ansicht des ursprünglichen Arrays erstellt. Dies bedeutet, dass die Änderung des von flatten() zurückgegebenen Arrays keine Auswirkungen auf das ursprüngliche Array hat, wohingegen Änderungen, die an dem von ravel() zurückgegebenen Array vorgenommen werden, im Original widergespiegelt werden.
- Leistung: Ravel() ist tendenziell schneller als flatten(), da es das Kopieren des Speichers vermeidet und zusammenhängende Ansichten verwendet. Dies kann beim Umgang mit großen Arrays von Vorteil sein.
- Stride Handling: reshape((-1,)) bietet eine weitere Option zum Reduzieren von Arrays, gibt jedoch eine Ansicht anstelle einer Kopie zurück flatten(). Allerdings ist die Kontiguität möglicherweise nicht gewährleistet, was sich auf die Leistung auswirken kann.
Fazit:
Das Verständnis der subtilen Nuancen zwischen flatten() und ravel() rüstet Sie aus mit dem Wissen, fundierte Entscheidungen darüber zu treffen, wann die einzelnen Funktionen eingesetzt werden sollen. Wenn die Beibehaltung des ursprünglichen Arrays von entscheidender Bedeutung ist oder Sie eine neue Kopie zur weiteren Verarbeitung erstellen müssen, ist flatten() die bevorzugte Wahl. Wenn andererseits Geschwindigkeit von entscheidender Bedeutung ist und eine Änderung des abgeflachten Arrays akzeptabel ist, bietet ravel() eine effizientere Lösung.
Das obige ist der detaillierte Inhalt von**Flatten vs. Ravel: Wann sollte ich welche NumPy-Funktion verwenden?**. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...

Wie benutze ich den regulären Ausdruck, um das erste geschlossene Tag zu entsprechen und anzuhalten? Im Umgang mit HTML oder anderen Markup -Sprachen sind häufig regelmäßige Ausdrücke erforderlich, um ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

Dreamweaver CS6
Visuelle Webentwicklungstools

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool