suchen
HeimBackend-EntwicklungPython-TutorialWie kann die relative Verschiebung in den Tick-Beschriftungen von Matplotlib für große Zahlen beseitigt werden?

How to Eliminate Relative Shift in Matplotlib's Tick Labels for Large Numbers?

Entfernen der relativen Verschiebung in der Matplotlib-Achse

Das Plotten gegen große Zahlen in Matplotlib kann zu einer Achse mit einer relativen Verschiebung der Teilstrichbeschriftungen führen. Betrachten Sie zur Veranschaulichung das folgende Diagramm:

plot([1000, 1001, 1002], [1, 2, 3])

Dadurch werden Teilstriche auf der Abszissenachse wie folgt generiert:

0.0     0.5     1.0     1.5     2.0
+1e3

Um die Bezeichnung „1e3“ zu entfernen und Teilstrichbezeichnungen der Form zu erhalten „1000,0“, „1001,0“ usw., folgen Sie diesen Schritten:

  1. Erfassen Sie die aktuellen Achsen mit gca().
  2. Erhalten Sie das X-Achsen-Achsenobjekt mit get_xaxis() .
  3. Rufen Sie das Hauptformatiererobjekt mit get_major_formatter() ab.
  4. Setzen Sie das useOffset-Attribut des Formatierers mit set_useOffset(False) auf False.
  5. Rufen Sie draw() zum Aktualisieren auf der Plot.

Alternativ kann in neueren Versionen von Matplotlib (1.4) das Standardverhalten über axis.formatter.useoffset rcparam geändert werden:

matplotlib.rcParams['axes.formatter.useoffset'] = False

Indem Sie diese anwenden Mit diesen Methoden können Sie die relative Verschiebung der Achse entfernen und Teilstrichbeschriftungen im gewünschten Format erhalten.

Das obige ist der detaillierte Inhalt vonWie kann die relative Verschiebung in den Tick-Beschriftungen von Matplotlib für große Zahlen beseitigt werden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Was sind einige gängige Operationen, die an Python -Arrays ausgeführt werden können?Was sind einige gängige Operationen, die an Python -Arrays ausgeführt werden können?Apr 26, 2025 am 12:22 AM

PythonarraysSupportvariousoperationen: 1) SlicicingExtractsSubsets, 2) Anhang/Erweiterungen, 3) Einfügen von PlaceSelementsatspezifischePositionen, 4) Entfernen von Delettel, 5) Sortieren/ReversingChangesorder und 6) compredewlistenwlists basierte basierte, basierte Zonexistin

In welchen Anwendungsarten werden häufig Numpy -Arrays verwendet?In welchen Anwendungsarten werden häufig Numpy -Arrays verwendet?Apr 26, 2025 am 12:13 AM

NumpyarraysaresessentialForApplicationsRequeeFoughnumericalComputations und Datamanipulation

Wann würden Sie ein Array über eine Liste in Python verwenden?Wann würden Sie ein Array über eine Liste in Python verwenden?Apr 26, 2025 am 12:12 AM

UseanArray.ArrayoveralistinpythonwhendealingwithhomogenousData, Performance-CriticalCode, OrInterfacingwithCcode.1) HomogenousData: ArraysSavemoryWithtypedElements.2) Performance-CriticalCode: ArraySaveMoryWithtypedElements.2) Performance-CriticalCode: ArraysFerbetterPerPterPerProrMtorChorescomeChormericalcoricalomancomeChormericalicalomentorMentumscritorcorements.3) Interf

Werden alle Listenoperationen von Arrays unterstützt und umgekehrt? Warum oder warum nicht?Werden alle Listenoperationen von Arrays unterstützt und umgekehrt? Warum oder warum nicht?Apr 26, 2025 am 12:05 AM

Nein, NOTALLLISTOPERATIONSARESURDEDBYARAYS UNDVICEVERSA.1) ArraysDonotsupportdynamicoperationslikeAppendorinStResizing, die impactSperformance.2) listsDonotguaranteConstantTimeComplexityfordirectAccesslikearraysDo.

Wie können Sie in einer Python -Liste auf Elemente zugreifen?Wie können Sie in einer Python -Liste auf Elemente zugreifen?Apr 26, 2025 am 12:03 AM

ToaccesselementSinapythonlist, verwenden Indexing, Negativindexing, Slicing, Oriteration.1) IndexingStartsat0.2) NegativeIndexingAccessses aus der THEend.3) SlicingExtractSporions.4) itererationSforloopsorenumerate.AlwaySChEckLegthtoavoidIndexerror.

Wie werden Arrays im wissenschaftlichen Computer mit Python verwendet?Wie werden Arrays im wissenschaftlichen Computer mit Python verwendet?Apr 25, 2025 am 12:28 AM

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Wie gehen Sie mit verschiedenen Python -Versionen im selben System um?Wie gehen Sie mit verschiedenen Python -Versionen im selben System um?Apr 25, 2025 am 12:24 AM

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

Was sind einige Vorteile bei der Verwendung von Numpy -Arrays gegenüber Standard -Python -Arrays?Was sind einige Vorteile bei der Verwendung von Numpy -Arrays gegenüber Standard -Python -Arrays?Apr 25, 2025 am 12:21 AM

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.