Grundlegendes zu verketteten Zuweisungen in Pandas
Einführung:
Beim Arbeiten mit Pandas stoßen Benutzer möglicherweise auf „SettingWithCopy“-Warnungen Anlass zu Bedenken hinsichtlich des Verhaltens von Vorgängen in der Datenstruktur geben. Ziel dieses Artikels ist es, das Konzept verketteter Zuweisungen und ihre Auswirkungen in Pandas zu erläutern, mit besonderem Augenmerk auf die Rolle von .ix(), .iloc() und .loc().
Verkettete Zuweisungen erklärt
In Pandas umfassen verkettete Zuweisungen eine Reihe von Vorgängen, die an einem DataFrame oder einer Serie ausgeführt werden und einer bestimmten Spalte oder einem bestimmten Element Werte zuweisen. Das direkte Zuweisen von Werten zu einer Serie oder einem DataFrame kann jedoch aufgrund der Erstellung potenzieller Kopien zu unerwartetem Verhalten führen.
Erkennen verketteter Zuweisungen
Pandas gibt Warnungen aus (SettingWithCopyWarnings), wenn der Verdacht besteht, dass verkettete Zuweisungen vorhanden sind verwendet wird. Diese Warnungen zielen darauf ab, Benutzer auf mögliche unbeabsichtigte Konsequenzen aufmerksam zu machen, da sie dazu führen können, dass Kopien von Daten geändert werden, was zu Verwirrung führt.
Auswirkungen von .ix(), .iloc() und .loc() auf Chained Zuweisungen
Die Wahl der Methoden .ix(), .iloc() oder .loc() hat keinen direkten Einfluss auf verkettete Zuweisungen. Diese Methoden werden hauptsächlich für die Zeilen- und Spaltenauswahl verwendet und haben keinen Einfluss auf das Verhalten von Zuweisungen.
Folgen verketteter Zuweisungen
Verkettete Zuweisungen können möglicherweise zu unerwarteten Ergebnissen führen, wie z. B. der Erstellung von Datenkopien anstelle des ursprünglichen Objekts geändert. Dies kann zu Verwirrung führen und es schwierig machen, Änderungen zu verfolgen und den korrekten Zustand der Daten zu ermitteln.
Verkettung von Zuweisungen und Warnungen vermeiden
Um verkettete Zuweisungen und die daraus resultierenden Warnungen zu vermeiden, wird empfohlen, Folgendes zu tun Führen Sie Operationen an Kopien von Daten und nicht an den Originalobjekten durch. Dadurch wird sichergestellt, dass Änderungen ohne Mehrdeutigkeit an der gewünschten Stelle angewendet werden.
Warnungen zu verketteten Zuweisungen deaktivieren
Bei Bedarf können Benutzer die Warnungen zu Verkettungen deaktivieren, indem sie die Option „chained_assignment“ auf „Keine“ setzen. mit pd.set_option(). Es ist jedoch normalerweise nicht ratsam, diese Warnungen zu deaktivieren, da sie als wertvolle Indikatoren für potenzielle Probleme dienen.
Beispiel für eine verkettete Zuweisung
Bedenken Sie das in der ursprünglichen Anfrage bereitgestellte Beispiel:
data['amount'] = data['amount'].astype(float) data["amount"].fillna(data.groupby("num")["amount"].transform("mean"), inplace=True) data["amount"].fillna(mean_avg, inplace=True)
In diesem Beispiel weist die erste Zeile der Spalte „Betrag“ Werte zu, wodurch möglicherweise eine Kopie erstellt wird oder auch nicht. Nachfolgende Zeilen bearbeiten die Spalte „Betrag“, bei der es sich möglicherweise um eine Kopie anstelle der Originaldaten handelt. Es ist expliziter, das Ergebnis der fillna()-Operationen einer neuen Spalte oder Variablen zuzuweisen, anstatt die Spalte „Betrag“ direkt zu ändern.
Empfohlener Code
Um verkettete Zuweisungen in zu vermeiden Beispiel bereitgestellt wird der folgende Code empfohlen:
new_amount = data["amount"].fillna(data.groupby("num")["amount"].transform("mean")) data["new_amount"] = new_amount.fillna(mean_avg)
Das obige ist der detaillierte Inhalt vonWann werden verkettete Aufgaben bei Pandas problematisch?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...

Wie benutze ich den regulären Ausdruck, um das erste geschlossene Tag zu entsprechen und anzuhalten? Im Umgang mit HTML oder anderen Markup -Sprachen sind häufig regelmäßige Ausdrücke erforderlich, um ...

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

Dreamweaver Mac
Visuelle Webentwicklungstools

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen